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1. INTRODUCTION

Current radar digital receivers have a linear
dynamic range greater than 100 dB with a linearity of
±1.0 dB. Some receivers on the market claim a
linearity of ±0.1 dB, post digitization.  A recent inquiry
to change the linearity specification to 0.25 dB resulted
in system analysis to obtain the desired linearity.

The desire for constricting the linearity
specification is a direct result of error analysis.  With
the current linearity specifications, the possible error is
dramatically large, allowing the conclusion that radar
based hydrology measurements are highly suspect.  By
increasing the linearity of a system, the possible
measurement error is greatly reduced, allowing
accurate hydrological products.

This paper addresses the pertinent issues
concerning reducing the linearity specification,
including the definitions of linearity, measurement
error analysis, dynamic compensation of system
variations due to temperature and age, and the impact
upon meteorological products.   Finally, we discuss the
cost-benefits of such a design, i.e. is the market willing
to bear the dramatically increased expense to achieve a
±0.25 dB linearity.

2. LINEARITY SPECIFICATION

A radar manufacturer specifies their systems are
linear to ±δ throughout the dynamic range.  An
obvious question for the customer, what does the
manufacturer mean by this statement?  How can the
validity of the statement be tested efficiently?  To
answer these questions, we need to explore
quantitative measures of linearity.

All measures of linearity revolve around
comparing a set of calibration data,
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where m is the slope and y0 is the intercept.  The
fundamental unit in these comparisons between the
data and the model is the deviation between them, i.e.
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These comparisons may take the form of p-norms or
of some statistical measures of the deviations between
the data and the model.

The simplest comparison is by far the p-norm,
(Stoer (1992)).  The p-norm is simply,
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with p = ∞ being the maximum deviation magnitude
(Stoer (1992)),
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For a specified δ, the associated linearity
definition becomes
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for 0 < p < ∞ and with p = ∞ being the maximum
deviation magnitude,
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for  p = ∞.
This definition has a major disadvantage.  By

judicious selection of data points, the system can
appear to meet or surpass specification even if
otherwise it would normally fail miserably.  For
example, consider the data in Table I.  From this table
we would conclude that the system meets the δ = 1.5
dB linearity specification with the ∞-norm.  Yet, at
higher resolution as in Table II, the system has failed
at numerous points.

Using the p-norm definition, the only method to
ensure the system meets required specification is to
obtain calibration data for the resolution of the
processor.  For a processor whose output is eight bit
reflectivity data, this implies a resolution of 0.5 dB or
200 points for a 100 dB dynamic range.  Sixteen bit



reflectivity data has a resolution of 0.01 dB, requiring
10,000 points.  This is not practical.

PInput
(dBm)

ZTheory
(dBZ)

ZMeasured
(dBZ)

Deviation
(dB)

-30.0 25.0 24.1 -0.9
-35.0 22.5 21.9 -0.6
-40.0 20.0 21.1 1.1
-45.0 17.5 17.3 -0.2
-50.0 15.0 13.6 -1.4
-55.0 12.5 12.2 -0.3
-60.0 10.0 9.9 -0.1
-65.0 7.5 6.5 -1.0
-70.0 5.0 5.3 0.3

Table I.  Table of data values in linear regime, input power from -
30.0 dBm to -70.0 dBm.  At this interval, 5.0 dBm the system
appears to meet ∞-norm specifications.  r = 0.994 and σ = 0.89.

PInput
(dBm)

ZTheory
(dBZ)

ZMeasured
(dBZ)

Deviation
(dB)

-30.0 25.0 24.1 -0.9
-31.0 24.5 25.5 1.0
-32.0 24.0 23.7 -0.3
-33.0 23.5 22.2 -1.3
-34.0 23.0 20.6 -2.4
-35.0 22.5 21.9 -0.6
-36.0 22.0 20.1 -1.9
-37.0 21.5 21.5 0.0
-38.0 21.0 21.6 0.6
-39.0 20.5 21.5 1.0
-40.0 20.0 21.1 1.1
-41.0 19.5 21.1 1.6
-42.0 19.0 18.8 -0.2
-43.0 18.5 15.5 -3.0
-44.0 18.0 15.2 -2.8
-45.0 17.5 17.3 -0.2
-46.0 17.0 15.6 -1.4
-47.0 16.5 17.9 1.4
-48.0 16.0 16.6 0.6
-49.0 15.5 15.8 0.3
-50.0 15.0 13.6 -1.4

Table II.  Table of data values in linear regime, input power from
-30.0 dBm to -50.0 dBm.  At this resolution, 1.0 dBm the system
fails to meet the ∞-norm specifications at numerous points.
r = 0.91 and σ = 1.48.

Alternatives to this brute force methodology
utilize ideas from statistics to validate claims more
efficiently and at the same time provide the customer
with a measure of linearity performance as well as
specification.

The first foray into statistical techniques is the
correlation coefficient.  The correlation coefficient is a

measure of how well the quantities relate to each other
(Yamane (1964)).  Mathematically, the correlation
coefficient is given by,
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The closer that |r| is to 1.0, the closer the relationship.
If r ~ 0, x and y do not relate to one another.

Performing correlation analysis on the data in
Table II, we obtain r = 0.91.  It is clear that the data is
highly correlated, i.e. it is very linear based upon this
analysis.  Yet, we do not have a measure for the error.

The next excursion into the statistical analysis is
to determine the parameters (slope and intercept) that
best fits the data.  In this process, an estimate for the
standard deviation (error) can be obtained that
quantifies the linearity of the system.  The method
used is to minimize a function of the deviations
squared, i.e. the least squares method.  The function to
be minimized is written (Stoer (1992)),
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The parameters of F(x) are the slope and intercept and
are given by (Yamane (1965)),
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The measure of the error, the sample standard
deviation, is given by (Yamane (1965)),
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This measure quantifies the linearity by
specifying error bounds with confidence intervals.  For



example, we can say with 68% confidence the error at
any one point will not be greater than σ, 95%
confidence that the error will not be greater than 2σ,
and 99.5% confidence that the error will not be greater
than 3σ, (Baird (1994)).

The linearity definition based upon a multiple of
σ is known as the multisigma linearity definition.  The
system approaches the ∞-norm definition as the
multiple of σ increases. The minimum multiple we
should consider is 3, i.e. 3-σ linearity ( )3

δσ ≥ .

For the data in Table II, we find the standard
deviation to be σ = 1.5 dB.  Thus, we have 68%
confidence that any point in the range will fall within
±1.5 dB from the curve, 95% confidence of  ±3.0 dB,
and 99.5 % confidence of ±4.5 dB.

Finally, the root mean square (rms) definition of
linearity is very similar to the 1-σ definition.  The only
difference is the term in the denominator (Yamane
(1965)), i.e.
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3. 0.25 DB LINEARITY

Specifying a δ = 0.25 dB linearity using the 3-σ
definition means that σ ≤ 0.083 dB.  This, of course,
has some serious implications upon the design,
implementation, and testing of any system with this
specification.

A requirement of 0.25 dB linearity over a 100+
dB dynamic range requires every component to be
scrutinized, selected, and/or modified with extreme
care.  The test signal generators need to be level across
the output power range and across the frequency range
of the generator.  Another consideration is the SMA
connectors.  Variance in a connector can be as much
as 0.25 dB with each cycle of connection and
disconnection.  The variance is even greater when
water vapor (humidity) effects are considered.
Assuming that once the system is assembled, no
maintenance requiring a disconnect are performed, the
loss will not vary greatly.

Noise reduction in the system can also assist in
improving linearity (as well as dynamic range).  The
obvious choice for reducing noise is to cool the
components.  Cooling the LNA's is relatively simple
with Peltier junctions.  The addition of a Peltier
junction can reduce the noise figure as much as 1 dB.
Similarly, cooling the mixer will reduce its thermal
noise.  In addition, the output of the mixer typically
has spurious peaks outside of baseband due to the
nonlinear effects of overdriving (performed to achieve

maximum dynamic range).  Cooling the mixer will
reduce these nonlinear contributions, thus reducing the
error in the mixer.

Each amplifier has a gain curve specific to that
particular device.  Each one will have different little
bumps and wiggles, deviations from perfect linearity
that must be corrected in the data processing.  Small
nonlinearities in the analog section of the can be
corrected in the digital section of the receiver.

At least one manufacturer of digital receivers
claims to be linear to within 0.1 dB (theoretical not
tested).  Correcting for small linearities in the analog
section of the receiver must occur in the digitization
section.  The addition of weighted noise and temporal
integration into the digitization process has the effect
of smoothing the small bumps and wiggles.  This
process averages a number of data samples with noise
added, the data is dithered.

Another technique for correcting the
nonlinearities is the use of a "smart" digitizer.  During
the calibration mode, a smart digitizer determines the
deviation between the digitized data and the linear
model for the A/D's.  These deviations are stored in a
lookup table for real-time correction of the data.  The
theoretical limit for a smart digitizer is the bit-weight
of the A/D devices.

Building a system for performance specifications
to be linear within 0.25 dB over a 100 dB dynamic
range is accessible, expensive but possible.  Once the
system is built, the system needs to be calibrated and
tested.  In otherwords, how do we verify the system
meets the desired performance specifications?   High
performance test and maintenance equipment must be
obtained.  To meet the specifications, assuming a 3-σ
specification, the calibration and test equipment
should have a variance no greater than 0.083 dB over
the entire dynamic range.  To illustrate, a mid-
performance test signal generator ($100,000) offers a
nonlinear error specification of 1.0 dB for output
signal levels from 90 dBm to +10 dBm and 2.5 dB for
signal levels below 90 dBm.  Hence, even this
generator would not be a suitable candidate for
calibrating our system.

4. PRODUCT IMPLICATIONS

The implications for the meteorological products
greatly depends upon the product resolution.  Most
products have an 8 bit (256 levels) or less resolution.
With 256 levels, the effective resolution of reflectivity
data is 0.5 dB (with a range from -31.5 to 95.5).
Constricting the linearity specification to δ = 0.25 dB
effectively reduces the error to within one reflectivity
quantum.  The current δ = 1.5 dB encompasses six
quanta of reflectivity.



One product area where these errors may have an
impact is in rainrate evaluation via the Marshall-
Palmer relation.  In the former, the maximum error in
the rainrate is,
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where b is the exponent in the Marshall - Palmer
relationship and R is the rainrate.  Using b = 1.6, we
find ∆R =  0.54R for δ = 1.5 dB and ∆R =  0.075R for
δ = 0.25 dB. In otherwords, for δ = 1.5 dB the relative
error in rainrate measurement (assuming the Marshall-
Palmer model fits the event exactly) is ~54% and ~7.5
% for δ = 0.25 dB.

Another product area is hydrometeor
classification using Z and ZDR.  Hydrometeor
classification is highly sensitive, particularly for "dry"
hydrometeors, to the value of ZDR which is the
difference between the horizontal and vertical
reflectivity values.  Since it is a difference, the
possible errors will add, thus a δ = 1.5 dB system
allows up to 3 dB error in ZDR.  This error is enough to
dramatically change the hydrometeor classification.  A
system with δ = 0.25 allows an error of 0.5 dBZ in
ZDR, resulting in more accurate classifications.

5. CONCLUSION

There are many possible definitions of linearity.
One is the p-norm with the ∞-norm being the easiest to
determine and visualize.  However, the p-norm
provides little information concerning the distribution
of the calibration data and requires that every
digitization point within the linear be tested.
Statistical measures using multiples of the standard
deviation (multi-sigma) provide a measure by which
the certainty of the calibration points can be estimated.
This allows for calibration with fewer points and a
measured certainty with the results.

From clearly a scientific perspective, the weather
radar industry should continuously evolve to higher
and higher precision to reduce the errors.  However,
the financial expense of producing such a system is
dramatic, easily adding several million dollars to the
price of a weather radar system. Only a few of the well
funded, government research laboratories have the
available resources to purchase such a system.
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