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1.  INTRODUCTION 
 
During the past ten years several papers on 

climate change detection and attribution using 
optimal detection techniques (Hasselmann 1993, 
1997; Hegerl et al. 1997; Stott et al. 2001; Paeth and 
Hense 2001) have been presented. A model 
generated climate change pattern is compared with 
respective data from observations where the 
comparison - based either on a distance or a 
similarity measure - is done using the Mahalanobis 
metric with the help of the inverse covariance matrix 
of natural climate variability. The method requires the 
specification of the natural variability in observations 
but the internal variability of the model results 
especially of the climate change pattern is rarely 
taken into account (Barnett et al., 1999). 

One way to include this information is the 
Bayesian approach.  Additionally this way offers the 
possibility to consider past experience on models as 
so called priors. Leroy (1998) was among the first to 
explore the Bayesian approach in climate change 
detection. He also pointed out the need for the 
estimation of model uncertainties. Berliner et al. 
(2000) used a robust Bayesian approach in one 
dimension (the amplitude of the fingerprint) to 
investigate the uncertainties in assessing anthro-
pogenic impacts on climate change resulting from 
uncertainties described by the priors. 

In this study we will present another Bayesian 
approach for climate change detection and attribution 
along the lines given by Leroy (1998). The method is 
applied to a two dimensional case using area 
averaged temperatures of near surface and 70 hPa 
level from ECHAM3-LSG simulations and NCEP/ 
NCAR reanalysis data. 
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2.  THEORY 
 

Applying the Bayes decision theory, we will treat 
the detection and attribution problem as a decision 
process to classify the observation d into a certain 
model mi. The Bayesian approach defines the 
decision rule using the posterior probability as a 
discriminant function (Duda and Hart, 1973). The 
conditional probability of a certain model mi given the 
observation d p(mi|d) (posterior) is evaluated from the 
marginal probability of the model itself p(mi) (prior) 
and the conditional probability of the observation 
given the model p(d|mi) (likelihood). 
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The prior includes the description of the model’s 
internal variability in terms of its individual realizations 
and a subjective measure of the overall probability of 
the model. The likelihood contains the description of 
the observational uncertainty. 

Assuming Gaussian distributions of model 
realizations and observation, the posterior probability 
of model mi can be evaluated as: 
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where, s is the dimension of data vector, 
�

i is the 
covariance matrix of model mi, 

�
0 is the covariance 

matrix of observation d, iA is the combination of the 
model and observation covariance matrices, and iΛ  
is a generalized distance measure between the 
model and observation. The det means determinant 
value of a matrix. 

The decision rule to attribute the observation into 
one of the two possible models (control m1 and a 
climate change scenario m2) is based on the log ratio 
of the two posterior values. 
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If log value of the ratio is above [below] zero, 
observation d is attributed to the model m2 [m1].  



Inserting Eq. (2), the decision rule has four terms as 
follows. 
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In case of Gaussian probability density functions, 
identical covariance matrices for two models and 
observation, and identical priori probabilities for two 
models, the Bayesian decision rule reduces to a 
standard linear discriminant function analysis which 
is the third term of the RHS of Eq. (4). 
 

 

Fig. 1. Time series of Northern hemisphere extratropics 

(20N-90N) area averaged temperature anomalies in a) 70 

hPa and b) 2 m level. NCEP/NCAR Reanalysis data (+ 

mark) from 1958 to 1999 and ECHAM3/LSG four scenario 

runs (solid line) from 1880 to 2049. 
 
 

3.   APPLICATION RESULTS 
 
NCEP/NCAR reanalysis data from 1958 to 1999 

are used as observation and ECHAM3/T21-LSG 
scenario runs utilizing the SA90 emission scenario 
data for the period 1880 to 2049 provide the model 

data. Spatially averaged near surface temperature 
and 70 hPa temperature for the Northern hemisphere 
extratropics (Fig. 1) are selected as detection 
variables (dimension of the data vector s=2). The two 
model cases are defined from an ensemble of 4 
realizations of ECHAM3/LSG, namely, control model 
m1 as all simulations for the 100 year period (1880-
1979) and the CO2 scenario model m2 as the mean of 
all model realizations in the model year 2000, but with 
the covariance matrix derived from the trend reduced 
anomalies from 1980 to 2049. 
 

 
Fig. 2. Attribution of NCEP reanalysis data to the control 

model (m1) and the CO2 scenario model (m2) in the model 

year 2000 using a general Bayesian approach in case of  

identical priors for two models. When the log ratio value is 

above [below] zero, the observation is attributed to m2 [m1]. 

 

 

Fig. 3. The change of attribution results in Fig. 2 as the prior 

probability of the CO2 scenario model varies from 0.05 to 

0.95. The gray shading reflects log ratio (larger than 0.5) of 

the posterior values for the CO2 scenario model (m2) and the 

control model (m1), 

 
Applying the decision rule (4) with identical prior 

for the control and the CO2 scenario model, the 



observations (monthly and area mean of 2m 
temperature and 70 hPa for the Northern hemisphere 
extratropics) are classified into the CO2 scenario 
model with an increasing frequency since the mid 
1990s (Fig. 2). By computing the individual posterior 
values, it is verified that this classification is not due 
to some exotic positions of data points relative to the 
models’ full priors following the suggestions by 
Berliner et al. (2000). 

Even if the priori for the CO2 scenario model is 
as low as 25%, the observations in the late 1990’s 
are still classified into the CO2 scenario model (Fig. 
3). 

 
 

4.  CONCLUSIONS 
 

A general Bayesian approach along the lines by 
Leroy (1998) is developed and applied to detection 
and attribution of a climate change signal using 
NCEP/NCAR reanalysis data (1958-1999) and 
ECHAM3-LSG scenario runs (1880-2049). It is 
shown that the Bayes decision technique which maps 
the prior information on the models to the posteriors 
with the help of the likelihoods can be a useful tool 
for the detection and attribution problems. The 
attribution of observed data to a control model and 
various climate change scenario models can be 
made with the Bayes decision rule of a least 
misclassification error. The specification of a prior of 
each scenario model represents the quantified 
degree of subjective belief in the model. 

The application results show that climate change 
signals by CO2 increase are detected in the late 
1990s due to the combined effect of the lower 
tropospheric warming and the stratospheric cooling. 
Even if the prior on the CO2 scenario model gets 
small, the signal in the late 1990s is still present. 

For future work, it is necessary to add other 
observation data and model scenario runs to 
ascertain our results. Scenario runs including sulfate 
aerosols will be added to the attribution study. Also 
the use of spatially averaged data has to be relaxed 
in favor of a more detailed spatial description. 
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