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1. INTRODUCTION

The ECMWF EPS (Molteni et al, 1996) has been used
operationally at the UK Met Office in the Previn


system since 1999. This paper discusses the recent
upgrade to the system to improve site-specific
probability forecasts. In §2 a Kalman filter system is
described which corrects biases in the 10 day site-
specific forecasts of 2m temperature (T2m), 10m wind
speed (WS) and precipitation (PPT12 and PPT24 – 12
and 24 hour accumulations), which depend on the site
and synoptic situation. It also enables the calculation
of site-specific minimum and maximum temperatures
(Tmin and Tmax).

The 51 Kalman Filtered ensemble members (including
Tmin and Tmax) are then used to generate probabilistic
forecasts, and their calibration is described in §3. The
operational implementation of the system and its
verification are considered in §4 and §5, respectively,
before a summary of these developments in §6.

The original Previn system produced probabilistic
information for 41 sites in the UK and their location is
illustrated in figure 1. Subsets of these sites were
used in this study, with 15 sites used to test the
Kalman filter and 30 used in the calibration. The
upgraded system has since been expanded to include
many more UK, European and global sites

2. KALMAN FILTER

Currently (Autumn 2001) the EPS runs at TL255
resolution (~80km over the UK). The gridded fields
are interpolated to specific sites but this leaves a
significant site-specific and synoptically-dependent
bias in the forecasts. The Kalman filter was
implemented as an exponentially-weighted least-
squares regression filter and was (unsurprisingly)
found to perform better than a simple running-mean
bias-correction at these sites for all weather
parameters except precipitation.
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Figure 1: Map of UK stations.

Corrections are made to every EPS forecast range at
6 hourly intervals, up to 10 days. In principle the
Kalman filter could be applied at each forecast time,
that is at T+0, 6, 12, …, 240 hours. In practice such a
correction incorrectly decreases the ensemble spread.
This is illustrated in figure 2 for a single station (WMO
code 03026, namely Stornoway in Scotland) where
the ensemble spread is plotted relative to the
unfiltered spread (at each forecast range). The
reduction in spread occurs because statistics based
on past forecasts include forecast errors as well as
site-specific errors. Correction based on these
statistics therefore pulls each ensemble member back
towards climatology, to correct for forecast errors,
thus reducing the spread.
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Figure 2: EPS spread after Kalman-filtering at
each forecast period, relative to the unfiltered

spread.



Instead a regression model is updated using the
control EPS member for each station and validity time.  
That is, corrections for 0Z, 6Z, 12Z and 18Z are
derived from forecasts at T+12,T+18,T+24 and T+30.
The appropriate model is applied to each forecast
time to correct the forecast (e.g 12Z model applied to
T+240). For Tmin and Tmax  the validity time depends
on the location of the station. In addition it was found
that the full Kalman filter regression was inappropriate
for precipitation and instead a simple  bias-correction
is applied to PPT12.

For each specific forecast parameter the optimum
statistical model must be determined. For example it
is reasonable to expect both wind speed and direction
to influence local temperatures (especially near water
or orographic features). Tests to determine which
statistical model was the best for each forecast
parameter (temperature, wind speed and
precipitation) were performed by comparing the ‘skill’
of forecasts produced from various statistical models
against the unfiltered EPS. An example is shown in
figure 3 where the skill of a simple bias correction and
seven different statistical models are compared. The
best model was determined for each parameter and
these are summarised below in table 1.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T+12 T+36 T+60 T+84 T+108 T+132 T+156 T+180 T+204 T+228

Bias

EWP_995_w

EWP_995_wc

EWP_995_wuv

EWP_995_tw

EWP_995_twc

EWP_995_twuv

EWP_995_twuvc

Figure 3: Skill scores for 10m wind speed from
various Kalman filter models.

A similar procedure was undertaken for comparing the
effect of varying the Kalman filter's ‘memory’ (i.e. the
amount of past data used in the statistical models)
and the optimal ‘memory’ was found to be
approximately 60 days.

Forecast
parameter

Regression
model

Tmax T, w, u-v, c

Tmin T, w, c

T2m T, w, c

WS10m T, w, u-v, c

Table 1: Kalman filter parameters.

Regression model parameers: T=2m temperature,
w=10m wind speed, c=constant (bias),

u-v=10m wind direction (cosine).

3. CALIBRATION

The Kalman filter corrects site-specific biases
effectively but the filtered PDF is still not always
reliable, in that forecast probabilities do not always
verify at the forecast frequency, resulting in deficient
reliability diagrams (Wilks, 1995). Verification rank
histograms from (site-specific) Previn forecasts often
exhibit overpopulated extreme ranks (outliers) which
may indicate insufficient spread in the ensemble (or
other effects – see Hamill (2001) for a discussion).
Calibrating the forecast probabilities overcomes these
deficiencies and the chosen method follows Hamill
and Colucci (1997) in using the verification rank
histogram to predict the correct probabilistic weights
used in the PDF.

3.1 Probabilistic weights

Previn PDFs are recalibrated using weights derived
from verification rank histograms from the previous 3
months, averaged over a group of stations (initially
these were a 30 station subset from figure 1).
Verification rank histograms count the number of
verifying observations falling within bins delimited by
pairs of ranked (in numerical order) ensemble
members. The EPS has 51 members so there are 50
bins delimited by two members and two outlier bins at
either end. The outlier bins contains all observations
that fall outside the ensemble, with the lower outlier
holding the observations less than the lowest
ensemble member, and vice versa for the upper
outlier bin. Ideally, observations would fall in each bin
with equal probability and therefore 1/52 of the
observations should fall into each bin (including the  
outliers). In reality the ensemble is not ideal and
departures from the ideal uniform shape are found
(e.g. see Hamill, 2001).

The ensemble members come from integrations of the
same numerical model, starting from analyses that are
perturbed with combinations of singular vectors
(Molteni and Palmer, 1993). The singular vectors are
optimised to give maximal growth over the first 48
hours of forecast time. The ensemble spread in the
early stages of the EPS forecast is low for all
parameters, giving overpopulated rank histogram
outliers. In addition the outliers may be overpopulated
at any forecast range due to the difficulty of
downscaling the TL255-resolution forecast to specific
sites.

Examples of the weights are shown below in figures 4
and 5 for temperature at T+54 and precipitation at
T+156, respectively (note both have logarithmic
vertical scales and the horizontal line denotes the
‘ideal’ weight of 1/52 for a 51-member ensemble).
Temperature is under-spreading with many EPS
forecasts being too cold (LHS bin) or too warm (RHS
bin) which the weights correct by broadening the
calibrated PDF, emphasising the tails.



0.001

0.010

0.100

1.000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
Ensemble bin

W
ei

gh
t

Figure 4: Weights for T2m at T+54h.

Figure 5 illustrates the model’s tendency to frequently
forecast small amounts of rain over a grid box when
no rain is observed at a specific location within the
grid box, which causes the LHS bin to be extremely
large. The weights in this case enhance the probability
assigned to the ensemble member with the smallest
amount of rain (often zero), shifting the PDF towards
zero. This can have an adverse effect on forecasts of
large amounts of rain. The difficulty of forecasting
large amounts of rain at specific sites is a known
problem with NWP models in general. More specific
calibration techniques could be used to improve this
situation.
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Figure 5: Weights for PPT12 at T+156h.

3.2 Fitted outlier tails

An overpopulated outlier bin causes a large amount of
probability to be assigned to that bin in the forecast
PDF, which is needed to make the PDF reliable.
However there is no information from the EPS about
the shape of the PDF in this bin. To provide such
information, the Previn forecast PDFs are extended
using Weibull distributions. These are fitted to the
distribution of the differences between verifying
observations and the relevant extreme EPS member.
Data for these are taken from 6 months – 3 months
prior to the current data and 3 months from the
previous year starting from the current month (e.g.
forecasts for August 2001 use data from

May/June/July 2001 and August/July/June1999
). The
Weibull fit to these data is improved by the Kalman
filter which eliminates many extreme outliers that are
strongly influenced by local effects.

Examples of the outlier distributions are shown in
figures 6 and 7. In the former the Weibull fit is poor as
the outlier distribution is clearly bimodal. This was
found to be influenced strongly by coastal sites.

In figure 7 the fit is improved by Kalman filtering the
data – indeed the spread of observations outlying the
EPS is much reduced (the maximum difference
decreases from more than 12oC in figure 6 to less
than 4oC in figure 7).
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Figure 6: Upper outlier distributions for T2m:
T+240h., Winter 1998/9, bias correction only.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Temp difference ( o C)

R
el

at
iv

e 
de

ns
ity

  
  

Figure 7: Upper outlier distributions for T2m:
T+240h., Winter 2001, Kalman filtered EPS.

Similar distributions are found for wind speed
(benefiting similarly from the Kalman filter) but
precipitation (PPT) exhibits different behaviour:

The lower PPT outlier bin contains many observations
where no rain was observed at the station yet small
amounts were forecast over the grid box. This results
in a distribution of outliers that is dominated by a
single bin at the origin (such as shown in figure 5) and
is poorly modelled by the Weibull distribution.
However since PPT is non-negative the dominant
lower outlier bin is equivalent to a large weight applied
to the lowest EPS member (usually at or near the
origin) and thus a fitted tail is unnecessary.

                                                          

* Year 2000 data were not archived for this purpose, thus
avoiding a fault which adversely affected the EPS
performance at that time.



At the upper end, the PPT outlier distribution exhibits
a long tail where the observed PPT was larger than
forecast. This kind of error is a well known problem
when downscaling NWP PPT. The Weibull distribution
does fit the majority of the upper outlier and it is hoped
that it has some benefit whilst recognising that it is
unlikely to compensate for the model’s inability to
correctly predict localised rainfall.

4. OPERATIONAL IMPLEMENTATION

The derivation of calibration statistics, either the
probabilistic weights or fitted tails, requires large
amounts of verification data. It is not possible to pool
data from 0Z, 6Z, 12Z and 18Z verifying times at all
forecast ranges since the weights and tails evolve
significantly both with time of day and forecast range.
Instead data are pooled from groups of stations. The
Kalman filter reduces (but does not eliminate) the
differing effects of orography between the sites and
facilitates grouping by station. This enables the
calibration to be performed using relatively recent data
each month.

Initially calibration used 30 UK stations in 2001 (a
significant number of the 41 stations in figure 1 have
closed since the inception of Previn). Averaging data
from these stations over 3 months is sufficient to
produce statistically stable weights under most
circumstances. Thus the weights used for the current
month are based on the verification rank histogram
from the past three months.

Ideally a larger sample is required in order to generate
representative tails (e.g. figures 6 and 7 contain 500
and 127 points, respectively). Since the tails are
observed to vary with the season a short averaging
time is also needed. To accomplish this, data are
pooled from the last 3 months in the current year
together with 3 months from the previous year. In
2001 this was complicated slightly by the lack of
archived data from January to November 2000 but will
not affect operations from February 2002. For
example, the fitted outlier tails from August 2001 use
data from May, June and July 2001 together with
August, July and June 1999. This forms a
compromise between the need to avoid sampling
‘between seasons’ and the rate of upgrades to the
EPS – ideally back statistics would be made available
at each EPS upgrade, but this is quite infeasible given
ECMWF's current resources.

In order to monitor the Weibull tails and provide
information about their success in modelling the
outlier distributions a resampling procedure is also
adopted. The procedure followed is as follows: The
pooled outlier data are made approximately
independent by imposing a 24 hour separation in the
data at each station (it being assumed that the outlier
differences between stations are somewhat
independent). A global Weibull fit is calculated from
these data and then 1000 bootstrapped resamples

(with replacement) are taken, usually of between 100
and 200 points from a global set of more than 500.
The fit to each subsample is assumed to be a point
from the ‘climatology’ of possible distributions and so
the location of the global fit within the resampled
distribution measures how representative the global fit
is of the ‘climate’. To be useful the global sample must
be large so that the subsamples are reasonable
realisations of the fitted tails – resampling from small
amounts of data is meaningless, from a climatological
perspective.

5. VERIFICATION

A probabilistic approach is used to verify the
improvements to forecasts from Previn. Brier scores
and reliability diagrams for specific forecasts are
illustrated below.

The Brier score is analogous to a probabilistic mean-
squared error – it is the mean-squared difference,
over a sufficiently long average, between the forecast
probability and the observed frequency. For forecast
probabilities yk and observations ok (ok=1 if the event
occurs, 0 otherwise) the Brier score is:
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BS=0 for a perfect forecast and is otherwise positive
(small values are better). Brier scores are calculated
for a specific probability forecast and hence a specific
weather parameter threshold. Thus there are many
cases that can be studied (and are generated
operationally within the Previn system) so for brevity
an illustrative example is included here.

In figure 8 the Brier scores for probability forecasts of
midnight 2m temperatures greater than 10oC are
shown for all forecast ranges from summer (JJA)
2001. The upper line (with the largest score so the
least skilful forecast) is from the uncorrected EPS
forecast and the group of lines beneath are, in order
of decreasing Brier score (increasing skill), the
Kalman-filtered EPS, the calibrated EPS using the
weights alone and finally the calibrated EPS with
weights and fitted Weibull tails.

Thus at all forecast ranges this probability forecast is
improved most by the Kalman filter and by a
consistent small amount by the calibration. Typically
the Kalman filter and calibration systems have a
beneficial impact on Brier scores for temperature,
wind speed and rainfall although the relative impact of
each varies – the calibration usually has a stronger
impact at early forecast times (where the weights are
largest).

For extreme precipitation events (such as 20mm PPT
falling in 12 hours) the calibration is actually



detrimental to the forecast. Less extreme events
dominate the calibration statistics and in the case of
precipitation the more extreme events are very poorly
sampled. A different kind of calibration may prove to
be more beneficial in such cases, with more explicit
downscaling from the EPS grid box to the local sites.

Raw

.)026

5HFDO:

5HFDO

Figure 8: Brier score for ( )2m 10 CP T > °  verifying at

midnight during summer (JJA) 2001.

Symbols: Triangle=Raw EPS; Diamond=Kalman filter;
Square=Calibration.

Calibration is intended to improve the probabilistic
reliability of forecasts and this can be verified by
comparing the forecast probability and frequency of
occurrence of events. An example of such a ‘reliability
diagram’ is shown in figure 9. The straight diagonal
line indicates the ideal situation where forecast
probabilities verify with the same frequency. The lower
line corresponds to the uncorrected EPS and shows
significant over-forecasting, predicting higher
probabilities than verifying frequencies. The Kalman
filter (diamonds) greatly reduces the over-forecasting
by correcting the forecast bias, but the probabilities
are still over-confident (indicated by a slope of less
than 45o on the diagram).
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Figure 9 Reliability of ( )12PPT 0.1mmP >  from

forecasts at T+48 during summer 2001.

Symbols: Triangle=Raw EPS; Diamond=Kalman filter;
Square=Calibration.

Over-confidence is typical behaviour where the
ensemble spread is insufficient to cover the full
uncertainty. The calibration (squares) reduces the
over-confidence for forecast probabilities between 0%
and 60%, but is unable to correct for higher
probabilities.

Similarly, figure 10 shows a reliability diagram for the
probability of winds exceeding 22 knots (Beaufort
force 6, 11.3 ms-1). In this case the raw EPS over-
forecasts the wind probabilities. The Kalman filter
corrects the bias quite effectively but again the
forecasts remain over-confident. The calibration
successfully corrects this to give fairly reliable
probabilities throughout. The reliability diagram in
figure 10 is somewhat ‘noisy’ making this assessment
imprecise but the trend seems clear. The noise arises
because of the small number of events in the higher-
probability bins. This is illustrated by the so-called
‘sharpness’ diagram in figure 11. Evidently the highest
probability bins contain less than 10 verifying events
after calibration (note that the vertical scale is
logarithmic).

Figure 10: Reliability of ( )10mWS 22knP >  from

forecasts at T+72 during winter 2001.

Symbols: Triangle=Raw EPS; Diamond=Kalman filter;
Square=Calibration, Cross=Calibration with tails.

The verification data are taken from a single season
(winter 2001 in the case of figures 10 and 11) and
from 30 UK sites. It is likely that the dataset contains
some poor forecasts which arise from synoptic
systems affecting more than one site. Such a situation
is responsible for the very unreliable final point on the
calibrated reliability curve (the 100% point in figure
10). The ten or-so forecast/observation pairs
contributing to this point all come from different
stations on the same date. Evidently more data are
required to remove the noise, which will become
available from winter 2002.



Figure 11: ‘Sharpness’ diagram showing the
number of events in each bin from figure 10.

A further test of the capability of the calibrated
forecasts is to examine forecasts of 95%-confidence
temperatures. These are forecasts of the temperature
range that the verification is expected to lie within 95%
of the time and can easily be made from Previn. The
verification should fall outside the forecast range 5%
of the time. Verification of this is shown in figure 12
where the three lines depict the frequency of
observations found outside the 95% range during
spring (MAM) 2001. Clearly the calibration is
beneficial at all forecast ranges (especially with the
fitted Weibull tails), improving the reliability of the 95%
limits considerably.

KFMOS
RecalW
Recal

Figure 12: Frequency of observations outside 95%
temperature intervals during spring 2001.

6. SUMMARY

Enhancements to the Met Office ‘Previn’ system for
producing site-specific probability forecasts from the
ECMWF EPS have been described. Fields from the
EPS are interpolated for specific sites and corrections
applied. The Kalman filter successfully corrects site-
specific biases. Statistical calibration and
augmentation of the resultant PDFs improves the
reliability of probabilistic forecasts. Brier scores show
that the full Kalman filter has a large beneficial effect
on wind speed and temperature forecasts. Additional
benefit comes from the calibration and is largest at
early forecast times where the EPS spread is
smallest. For precipitation a simple bias correction
replaces the Kalman filter (which is less effective in
terms of Brier scores) and the calibration is most
beneficial for small precipitation amounts (less than
10mm in 12 hours). An alternative strategy is being
considered for improving the probabilistic forecasts of
more extreme events, such as larger precipitation

thresholds. The calibration is not tuned for these rare
events, with the statistics being dominated by more
common events.

Reliability of the probability forecasts is usually
improved by the Kalman filter and calibration,
especially when considering 95% confidence
temperature ranges. However there are applications
(such as the aforementioned forecasts of large
amounts of precipitation) for which the calibration is
not suited. To enable users to identify these and make
best use of the system, verification of probability
forecasts with a large number of thresholds is
performed routinely.

The improved Previn system is currently running
quasi-operationally (Autumn 2001), producing
corrected probability forecasts for many sites. It allows
for the production of useful products for many
potential Met Office customers, including the offshore
oil and gas industry.
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