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1. INTRODUCTION 

In many industries weather conditions are a critical factor
in planning business operations and making effective deci-
sions.  Typically, what optimization that is applied to these
processes to enable proactive efforts utilize either historical
weather data as a predictor of trends or weather forecasts of
limited precision.  Alternatively, numerical weather models
operating at higher resolution in space and time with more
detailed physics exist for short-term forecasting (i.e., a few
days at the mesoscale) that offer greater precision and accu-
racy for a more limited region.  Although such a model has
occasionally been adapted for the specific three-dimensional
geographic area and time-scale relevant to the aforementioned
decision making (e.g., Carpenter and Bassett, 2001; Snook,
2001), usually it is not.  

Mesoscale models can be utilized in variety of weather-
sensitive decision-making efforts such as emergency planning,
energy production, airline operations, risk assessment, agricul-
tural activities, commodity trading, etc.  For each of these
applications, information is assessed and decisions are made
based upon a variety of static and dynamic data sets, a subset
of which are weather-related.  The utilization of these data and
the complexity of the decision-making process changes when
high-resolution predictive data are incorporated.  These appli-
cations imply the coupling of weather simulations with other
models, analyses and data. 

Figure 1.  Visual data fusion for weather applications.
In order for mesoscale models to be utilized in such appli-

cations some adaptation is required, including customization
of the computational grid and model parameterization focused
on the specific weather sensitivity of the business operation
process in question.  To enable effective assessment and

appropriate decisions, focused visualizations must also be
designed to integrate business and weather model data, yet still
be driven by user goals.  These visualizations must employ
appropriate mapping of user goals to the design of pictorial
content by considering both the underlying data characteristics
and the (human) perception of the visualization (Treinish,
1999a).  Hence, the resultant visualizations may not show
forecasts of weather phenomena directly but the derived prop-
erties, which are influenced by weather, and are of direct rele-
vance to the decision maker or industry specialist.  In these
cases, the information is in terms of the impact of weather, not
weather variables produced by a simulation.  The problem is
illustrated schematically in Figure 1.  Two traditional data gen-
erators are shown on the top and the bottom (weather and non-
weather, respectively).  Although visualization is applicable to
both, typically this is mutually independent.  An approach of
visual data fusion to address the visualization design problem
in such applications is proposed as one method of coupling
mesoscale models to business operations.
2. DATA FUSION

Data fusion is simply the integration of multiple data sets.
This notion is derived from the fact that understanding of phe-
nomena from a scientific basis, creating an engineering design,
or assessment for sound decision making requires the utiliza-
tion of data from many distinct sources.  Traditionally such
tasks have utilized a single data set, but as a result is often
incomplete for larger-scale problems that are becoming more
prevalent today.  In parallel with the growth in problem com-
plexity are additional factors that make the need for data
fusion more practical and thus, more pervasive.  The relative
availability of relevant data enables a comparison study for a
data generator as much as it does an independent analysis.
Secondly, data generators have become more capable and
accessible.  Digital data acquisition is easier and cheaper.
Computational simulations are gaining fidelity and detail
while becoming more practical to compute.  From verification
of computational and experimental models to steering simula-
tions with real-world observations, bringing data from multi-
ple sources together is much more powerful than using each
source separately.  Visualization is critical to this integration,
without which the beneficiaries of such data would be over-
whelmed by volume or complexity (Uselton et al, 1998).

Data from multiple sources require care in their presenta-
tion so that artifacts due to the visualization process are not
introduced by data fusion and erroneously interpreted as fea-
tures in the data.  For example, the data may not be uniformly
available for the spatial domains being examined.  Each of the
data sets to be "fused" are generally not geographically co-reg-
istered and are defined on differing geometric structures.  Fur-
ther, the coordinate system for visualization and interaction
may need to differ from those native to the data sets of interest.  

These issues have been considered by others in a variety
of applications including earth science, physics, astronomy
and medical imaging (Uselton et al, 1998).  In the majority of
these cases, the user goals focused on analysis or verification
as opposed to data assessment as illustrated in efforts to com-
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pare computational fluid dynamics results with experimental
data from wind tunnels (Keely and Uselton, 1998).  More
recent work has considered decision support (Bisantz et al,
1999) but from a human factors perspective.
3. APPROACH

To enable visual data fusion, a perspective of data man-
agement must be adopted by introducing an uniform data
model that is matched to the structure of the data as well how
such data are used.  This implies a generalized mechanism to
classify and access data as well as efficiently map data to oper-
ations.  The implementation of such a data model effectively
decouples the management of and access to the data from the
actual application.  This encapsulates the variety of sampling
and representations for diverse data and provides uniform
access.  It it then a prerequisite to building applications that
utilize the data sets to be integrated (Treinish, 1999b).  One
consequence of such a data (model)-centric approach is that
the same operation(s) can be applied to data sets that need to
be visually fused or correlated (i.e., displayed and interacted
together) without introducing superfluous interpolation or res-
ampling to a common mesh.  The latter process implies a mod-
ification to the data, whose impact could be hidden in
subsequent visualization.  Further, if a specific visualization
task requires a cartographic projection, then these data sets can
be independently warped by the prerequisite transformation.
Any geometric distortion that is introduced is due only to the
actual projection since the data and topology remain invariant
through such a transformation.  It is also independent of the
choice of realization or rendering technique or cartographic
projection, and hence, provides a framework for experiment-
ing with different visualization strategies.  As a result, the
fidelity of the original data sets is preserved in a coordinate
system suitable for dynamic interaction.  It implies that correl-
ative visualization for visual fusion can be approached from
four perspectives.  In all cases, the specific choices are dictated
by the goal of the visualization task(s) as defined by the indi-
viduals or applications utilizing the data.
1. Image Level.  The capability to look at multiple sets of

data in exactly the same fashion (i.e., visual comparison
within a common framework).  This can be achieved with
multiple visualizations in adjacent windows or mosaiced
together for qualitative comparison.  These visualizations
are usually static, but might be accompanied by synchro-
nized animation sequences or geometric transformations
in which the representations are linked.  Outside of the
latter, interaction is typically indirect.  This class of data
fusion can be represented as a function, F, of different
images or data sets, such that F = a, b, ...

2. Common View.  The capability to utilize a variety of visu-
alization strategies within a chosen coordinate system
dictated by one of the data sets or independently by user
task.  This represents a visual fusion which can support
both direct and indirect interaction, including numerical
querying.  All of the relevant data are registered within
this common viewing framework.  Qualitative compari-
sons are clearly supported, but direct quantitative com-
parisons are defined by interaction.  This class of data
fusion can be represented as F, such that F = f(a, b, ...).

3. Data Level.  The capability to numerically compare dis-
tinct data sets using either of the two previous approaches
for visualization.  This does require the transformation
(e.g., interpolation) of one or more data sets to a common

basis (mesh, coordinate system, etc.) from which derived
quantities can be calculated (e.g., point-wise opera-
tions).  The visualizations may involve the original data
and/or the derived data.  From the discussion earlier this
can violate the principle of preserving fidelity at the cost
of supporting numerical comparisons.  This class of data
fusion can be represented as F, such that F = a(b), F =
f(a), etc.

4. Multiple Views.  The capability to numerically and visu-
ally compare multiple data sets, particularly when some
of the data sets do not have a common basis for visual
fusion.  In this case, the utilization of a variety of differ-
ent strategies is required, some of which must be in sepa-
rate instead of a common framework.  Interaction may be
complex because separate metaphors for direct interac-
tion are required for each framework, although common
methods for indirect interaction are feasible.  Unlike case
1, quantitative access is supported such that linked dis-
plays would indicate related numerical values or
"regions" of commonality that are queried.

4. APPLICATIONS
To evaluate the aforementioned approach to data fusion,

it is applied to problems that relate to economic and societal
impacts of weather.  In particular, three applications are con-
sidered in increasing complexity from the data fusion perspec-
tive: emergency planning, aviation and electricity demand
forecasting.  In each case, the goal is to provide products or
techniques that can be utilized in a timely fashion to address
specific business problems under the assumption that the
model results are generated sufficiently fast at an appropriate
level of precision.  In all of these examples, a customized ver-
sion of the Regional Atmospheric Modeling System (RAMS)
is employed to generate the example forecast data (Pielke et al,
1992)
4.1 Emergency Planning

Weather-related catastrophes have led to over $48B in
property insurance claims from 1989 to 1993 in the US.  In
North Carolina alone, ten major hurricanes from 1983 to 1996
resulted in about $50B worth of damage, almost $30B of
which led to losses by insurance companies (Kunkel et al,
1999).  Hence, disaster planning or hedging for underwriting
risk-related insurance can benefit from improved weather pre-
dictions.  In both cases, the impact of weather is relevant in
visualization but not the weather data directly.  Although geo-
referenced visualizations are required, the illustration of time-
dependent factors related to property loss due to severe
weather are needed, not merely a visualization of predicted
wind velocity, for example.  Usually, an Image Level approach
is applied as shown in Figure 2.  Each image contains a simple
two-dimensional map of a set of glyphs colored by a different
parameter.  The glyphs are located at the centroid of the area
associated with zip codes.  

However, the glyph locations are only marked on the map
when a set of conditions on house value, population and esti-
mated damage due to wind are met.  Therefore, a Common
View approach is more efficient by leveraging user interaction
as illustrated in Figure 3.  The user is free to interactively set
the conditions and animate in time corresponding to the
weather simulation in hourly steps.  The weather prediction
data are from a RAMS run at 8 km resolution centered over
Dallas.  This enables the determination of areas of greatest
impact due to severe weather.  Essentially, it represents a sim-



Figure 2.  Image Level data fusion of mesoscale weather model results with demographic data over an 800 x 800 km domain at
ple method to specify a query against various data sets, which
are then used to constrain a visual integration for display and
interaction.  This approach becomes Data Level because the
forecast data are interpolated to zip code locations in order to
support the query constraints.  These thresholds can also be
augmented to include other relevant demographic, customer or
property data.  The demographic data shown are derived from
available census information (http://tiger.census.gov).

In this example, the conditions for display are enhanced
to include a simple computational model.  The level of wind-
induced damage is based upon analysis of effects on typical
residential buildings from severe weather (Unanwa et al,
2000).  This approach to data fusion may be useful for plan-
ning purposes by an insurance company or deployment of
repair crews by a utility or local highway department.

Figure 3.  Common View data fusion showing the relation-
ship between demographic data and a mesoscale model in
a screen capture of an interactive session.  This also is a
Data View data fusion because the locations of estimated
damage are calculated from the weather model data.

4.2 Aviation
There is an obvious and direct correlation between

weather-related factors and business productivity in the opera-
tion of an airline.  For example, the 16 largest airlines based in
the US estimate that the average direct cost due to weather-
related delays and cancellations is $269M.  On average that
implies $40K per cancellation and $150K per diverted flight.
However, that does not include the fact that canceled or
diverted flights lead to additional flight delays, which can eas-
ily imply much greater financial impact.  There are also addi-
tional costs for insurance payouts or lost time for employees
related to encounters with turbulence (Qualley, 1997).

Route planning, dispatch, snow removal planning, de-
icing deployment, etc. can all be better supported for both
safety and efficiency with the use of improved weather infor-

mation.  This is why air-
lines typically invest in
infrastructure and staff to
ac qu i r e  and  ana l yz e
weather data.  As is con-
ventional in the industry,
this investment consists of
two key parts.  The first is
the interpretation of the
results of synoptic-scale
models,  which provide
coarse forecasts a few days
into the future.  The second
type of information is near-
r ea l - t ime  ana lys i s  o f
weather observations from
sensors  a t  and  nearby
major airports as well as
the  i n s t rumen t a t i on
deployed  by  the  NWS
(e.g., NexRAD).  Such data
are very useful for short-
t e rm  ( i . e . ,  m inu te s  t o
hours) detailed planning
and airl ine operations.
However, there is a gap in
what is conventionally
available -- namely, cloud-
scale over the next 24 to 48

hours for areas of key interest to an airline such as around
major airports.  Information of this class can be derived from
appropriately configured, mesoscale weather models operating
sufficiently quickly to produce localized, high-resolution fore-
casting information.  This could include predictions of severe

8 km resolution centered over Dallas.  Colored glyphs at zip code locations illustrate a subset of demographic and derived data.



storms (damaging winds and hail for parked aircraft, high
winds and precipitation to prevent aircraft landings and take-
offs, sufficient snow and ice to require de-icing of aircraft,
plowing of runways), cloud ceilings and visibility (poor
enough to impact aircraft landings and takeoffs), turbulence
and icing surfaces, upper air winds (for flight planning), etc.

Figure 4. Data Level data fusion illustrating derived visibil-
ity properties from nested mesoscale model cloud predic-
tions along with wind and other cloud data at three
resolutions (16, 4 and 1 km) focused on New York City.

To illustrate these ideas, an adaptation of an operational
use of RAMS has been made (unpublished -- see http://

www.research.ibm.com/weather/NY/NY.html for more infor-
mation).  This capability is derived from earlier work support-
ing the 1996 Centennial Olympic Games in Atlanta (Snook et
al, 1998).  Currently, one or two 24-hour forecasts are produced
each day on a 3-way nested configuration of 62x62x31 at 16, 4
and 1 km resolution focused on New York City.  Each model

run requires about two hours of compute time
on twenty-four 375 MHz Power3 processors of
an IBM RS/6000 SP (i.e., fast enough for oper-
ational applications).  Among the enhance-
ments to RAMS is a suite of interactive and
production visualization tools, which also sup-
ports dissemination via web browsers (Trein-
ish, 2002).  One operational product is focused
on aviation and is a simple example of Data
Level data fusion, which is shown in Figure 4.

The three images in Figure 4 correspond
to the three modelling nests at 16, 4 and 1 km
resolution, from top to bottom, respectively,
which are snapshots of an animation with one-
hour time steps.  Each contains a brown, trans-
lucent, three-dimensional surface shown in ver-
tical pressure coordinates, which corresponds
to a boundary where the derived visibility is 10
km.  This visibility is based upon extinction
properties of cloud water, ice and precipitation
(i.e., Stoelinga-Warner, 1999), which is deter-
mined from the modelled upper air.  Its on-
demand calculation and visualization within a
three-dimensional geographic scene represents
Data Level data fusion.  This isosurface is not a
cloud boundary.  Thus, the volume inside the
surface represents relatively clear air, that is,
visibility over 10 km.  If no surface is visible
then there are no clouds predicted at that time
step, and thus, the visibility is high.  At the bot-
tom of the scene is a set of colored contours,
typically in increments of 2 km, corresponding
to the height in meters of the forecasted cloud
base as shown in the color legend to the lower
right.  Areas in gray imply no cloud data.  The
cloud base contours are overlaid with maps of
coastlines and state boundaries in black and
rivers in blue.  The volume is marked at either
three or four locations with set of colored
poles.  These locations correspond to major air-
ports (16 km nest: 1 = DCA, 2 = PHL, 3 =
LGA, 4 = BOS; 4 km nest: 1 = PHL, 2 = EWR,
3 = HPN; 1 km nest: 1 = JFK, 2 = EWR, 3 =
LGA, 4 = HPN).  The poles are color contoured
by the derived visibility using the color legend
to the lower left.  At each of 21 pressure levels,
the horizontal wind is shown via arrows.  The
arrows are colored by horizontal wind speed
following the legend to the upper left.  The
arrow length also corresponds to speed.  This
approach presents information relevant to flight
planning as opposed to direct meteorological
analysis.

4.3 Electric Utilities
Another application of a predictive weather model is to

forecast load on a power-generation facility or transmission
lines for efficient running of the facility or for power trading.
In both cases, meteorological information is an important input



as weather is a primary driver for electricity demand.  It has
been estimated that the annual cost of under or over predicting
electricity demand due to poor temperature forecasts is several
hundred million dollars in the US alone.  Erroneous weather
data associated with startup-shutdown of generation units can
be worth $500K per day during peak load periods or conserva-
tively $8M annually to a regional power authority.  In addition,
improved severe storm predictions to reduce outage time can
save a few hundred thousand dollars a year for a typical utility
(Keener, 1997).  Decisions in this industry are driven by
diverse non-weather data and processes including load fore-
casting and econometric models, customer demographics,
geography of power facilities, etc. that are not usually well
integrated.  The weather information currently used is rela-
tively coarse leading to poor and costly decisions.  Typically,
hourly forecast surface temperature and dew point values aver-
aged over a large geographic region are employed.  Alterna-
tively, more accurate data at greater frequency which are
distinct for different loads by geographic location and altitude
can be applied coupled with other factors that influence load
(e.g., storm and cloud predictions).  Since there is a relation-
ship between accuracy in load prediction vs. economic effi-
ciency (i.e., an under prediction implies having to buy power
at a premium and over prediction means resources are wasted),
coupling of weather forecasts with econometric models is also
feasible.  

To provide a simple illustration of these ideas, first con-
sider Figure 5.   It contains two frames (18Z and 6Z) of a 24-
hour animation with 10-minute time steps (24-hour run initi-
ated at 12Z).  They were generated by the same operational
environment outlined in the previous section.  Each image
shows a topographic map overlaid with coastlines, and state
and county boundaries.  An additional overlay is present,

Figure 5. Data Level data fusion of temperature data from
an operational nested mesoscale model with electricity
transmission lines in New York State at two different fore-
cast times from a single model run.

which is a map of the southeastern portion of the major com-
ponents of the electricity transmission system in New York
State (i.e., lines of capacity greater than or equal to 115 kV).
The forecasted surface temperature from the three RAMS
nests are combined into a multi-resolution structure (Treinish,
2000) and then interpolated to the geographic location of the
transmission lines.  The results are color contoured and (Data
Level) fused with the other maps.  The model prediction shows
considerable variation in temperature along this system over a
12-hour period, thus illustrating the potential for mesoscale
modelling in support of electricity transmission operations.  

Figure 6. Data Level data fusion of a mesoscale weather
model at 8 km resolution centered over Atlanta with a pre-
diction of electricity demand at power plants operated by
Georgia Power.  The demand is calculated from a model
whose input is derived from the numerical weather predic-
tion.  

This capability can be further enhanced by using upper
air model results to better correspond to the elevation of over-
head lines and apply them to map a derived transmission effi-
ciency as a function of location and time.  (The data for the
electricity transmission system are available courtesy of the
GIS Unit, New York State Department of Public Service.)

A more complex example is shown in Figure 6 via Data
Level fusion.  It contains a map of Georgia with forecasted
heat indices at 8 km resolution.  Major cities and locations of
the generators owned and operated by Georgia Power, the
local electric utility, are shown by name.  (These and other
data from Georgia Power are available in the public domain
via http://www.georgiapower.com.)  Each power plant
location is also marked with a pin. whose height and color
indicate a predicted electricity demand.  A dual encoding is
used because the capacities of the power plants range over five
orders of magnitude.  Hence, height is a linear mapping while
color bands are scaled logarithmically.  The load is computed
interactively as a function of temperature, humidity and time
of day from a simple model.  The temperature dependence is
based upon a polynomial approximation of the relationship
between historical data of power demand and weather obser-
vations, shown in Figure 7 (Robinson, 1997).  Regression on
the data from summer weekdays in the southeastern United
States after outliers are removed yields, 

W = 1.146 - 0.0225T - 0.000240T2 + 0.0000397T3       (1)



Figure 7. Weather-dependent energy load, W(T).
The temporal variation is based upon a spline fit of hourly

electricity requirements for mid-week days in urban and sub-
urban tropical environments, which is consistent with other
results in the literature (Chang and Li, 1998).  That component
is shown in Figure 8, which is then normalized.

Figure 8. Diurnal, mid-week energy load, N(t).
The temperature and temporal components are combined

for a total estimated load, L, such that
L = C[(0.2768809N(t) + 0.7231191)(W(THI)/2.9175)]     (2)

The function is scaled by the rated power plant capacity, C,
using published data (http://www.georgiapower.com/
newsroom/plants.asp).  Heat index, THI, is employed as a
more accurate measure of demand than simply temperature.  It
is an apparent temperature derived from both temperature and
humidity as an indicator of personal comfort during the sum-
mer (Rothfusz, 1990).  Therefore, it is directly related to air
conditioning usage and thus, electricity demand.  The weather
model results are interpolated at each time step to the location
of each of the power plants.  An example for the specific 24-
hour period of the forecast is shown in Figure 9 for the largest
power plant operated by Georgia Power (Bowen).

Figure 9. Predicted power demand at a specific generator
site derived from a weather-model-driven load forecast.

All of these capabilities are illustrated in Figure 10, which is

a screen capture of a prototype of an interactive application for
detailed load forecasting.  The user has the ability to select the
type of power plant (fossil, hydroelectric and/or nuclear), what
data to show on the map (e.g., weather, geographic or other
customer/demographic) and to query individual power plants
(i.e., by visual selection). The results of the query include the
predicted load at each time step (as fine as every 10 minutes)
as well as a plot of predicted load over 24 hours with weather
data at that location.  The interactive application is then a Mul-
tiple View fusion.

The visual fusion techniques of Figures 6 and 10 are com-
bined in Figure 11, which shows the load forecast at the power
plants that use fossil fuels with a population map.  The popula-
tion data are shown as colored contours on a logarithmic scale
to segment urbanized areas (red) and their location with
respect to the power generators under the heaviest demand.
Although these data are derived from static census sources, the
same techniques would apply to similar but proprietary cus-
tomer data owned by a regional electric utility.
5. IMPLEMENTATION

The applications shown in Figures 3 and 10 present a user
interface based upon XWindow/Motif for indirect interaction
and OpenGL for direct three-dimensional interaction in carto-
graphic coordinates native to the weather simulation.  They
have been implemented with Data Explorer (DX) (Abram and
Treinish, 1995).  DX is a portable, open source, general-pur-
pose software package for visualization and analysis  (http:/
/www.research.ibm.com/dx and http://www.opendx.org).
A generic toolkit was used to avoid having to implement a
graphics and computational infrastructure.  Unlike traditional
meteorological graphics or geographic information systems,
DX is parallelized for multiprocessor systems and can utilize
three-dimensional graphics accelerators.  DX is built upon an
unified data model that enables these applications to operate
directly on the native gridded weather data without transfor-
mation or compression.  
6. CONCLUSIONS AND FUTURE WORK

The visualization of applications of mesoscale weather
modelling have benefited from a focus on specialized inter-
faces and tools matched to user goals and underlying visual-
ization tasks.  These are based on utilizing more complete
design principles as well as accommodating the fact that the
users’ expertise will not be in weather modelling, but in the
application domain.  

Since the underlying toolkit is extensible tools can be
reused between applications with similar user interface com-
ponents.  Although these applications and associated user
goals are different, underlying data fusion requirements and
visualization tasks are the same.  Further, the need to employ a
relatively simple user interface is desirable to reduce the effort
for training of users in time-critical activities such as decision
support.  It also reduces the cost of development and mainte-
nance, and enables more rapid iterative refinement with or
adaptation to new users.  Therefore, within any given applica-
tion, incorporation of additional and more complex data sets
can also be addressed.  But the goal remains the same -- to
develop simple interfaces and useful visual fusion.

The specific work discussed herein is on-going.  One
aspect of continued efforts will be to incorporate more sophis-
ticated models or processing as the consumer of weather fore-
cast data.  For example, the simple load forecasting model can
be enhanced to include wind speed and sunshine duration
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effects and also, adjusted for more realistic temporal variation
based upon day of week and season.  To aid in the decision
making applications, migration to a probabilistic representa-
tion will also be advantageous.  In addition, it is believed that
these ideas can be extended to other application areas such as
agriculture, finance, etc.  

Mesoscale modelling can be used by businesses for com-
petitive advantage or to improve operational efficiency and
safety.  Enormous potential exists for changing the typically
reactive approach to such weather-sensitive operations to
being proactive. Critical to success of such endeavors will be
the timely production of visual products that are directly rele-
vant to the decision-making process.
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