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1. INTRODUCTION

The original work of Hasselmann (1976) on stochas-
tic climate theory pioneered the use of linear stochas-
tic dynamics for modeling and predicting various modes
of climate variability. Since then, convincing evidence
has been presented that many climate phenomena are
described by linear stochastic dynamics, at least as a
first-order approximation (Penland and Matrosova, 1994;
Whitaker and Sardeshmukh, 1998). Linear stochastic
models are also routinely used in operational climate
forecasts (Penland and Matrosova, 1998; Winkler et al.,
2001). Therefore, a general understanding of the pre-
dictability of linear stochastic dynamics is of theoretical
interest and practical value.

A system is understood to be predictable on those
time-scales where prediction errors do not exceed climate
variability (Lorenz, 1969). Predictability depends on both
the physical system and on the prediction system. Phe-
nomena modeled by linear stochastic dynamics evolve
according to stochastically-forced deterministic linear dy-
namics. In a prediction model consisting of the linear de-
terministic dynamics alone, prediction errors are due to
initial condition errors and to the absence of stochastic
forcing. Here we focus on the latter source of error and
assume perfect initial conditions.

In this case, prediction errors depend on the determin-
istic dynamics of the prediction system and the stochastic
forcing. Since it is difficult to determine the structure of
stochastic forcing in reality, often theoretical studies as-
sume that the noise forcing is unitary; a spatially white
noise is a trivial example of unitary noise forcing. Under
such forcing, all normal modes of the system are excited
and error covariance growth is maximized in the spectral
norm (Tippett and Cohn, 2001). Prediction error growth
then depends on the temporal (eigenvalues) and spatial
(eigenvectors) characteristics of the normal modes of the
dynamics. An interesting question is how the predictabil-
ity of a linear stochastic model relates to the eigenmodes
of the system?

A key factor in describing and understanding predic-
tion error growth is orthogonality of the eigenvectors of
the dynamics. Dynamics with a complete set of orthogo-
nal eigenvectors is said to be normal, and error growth in
a such system is simply determined by the eigenvalues
of the dynamics. Error growth in nonnormal systems is
magnified compared to that in normal systems with the
same eigenvalues (Ioannou, 1995; Farrell and Ioannou,
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1996). The enhanced error growth of nonnormal systems
raises the question of whether predictability is lost at a
faster rate in nonnormal systems.

Since predictability depends on the relative sizes of
prediction error and climatological variability, and since
nonnormality increases both, it is not immediately obvi-
ous whether the effect of nonnormality on predictability is
positive, negative or indeterminate. Chang et al. (2001)
recently attempted to address this issue using a set of
conventional predictability measures. Here we show that
nonnormality in fact increases predictability under a set
of generalized predictability measures. We define pre-
dictability using the eigenvalues of the predictive infor-
mation matrix, a measure of relative prediction error size
(Schneider and Griffies, 1999).

We begin our discussion in Section 2 with an introduc-
tion to a general linear stochastic system and associated
prediction error growth; in Section 3 we analyze the pre-
dictability of the linear stochastic system under a set of
general predictability measures; in Section 4 a theoretical
example illustrates how nonnormality can give enhanced
predictability; in Section 5 we summarize the general find-
ings of this study and discuss their general implications.

2. LINEAR STOCHASTIC DYNAMICS

We assume that the observed phenomenon of interest
is represented by a real n-dimensional state-vector wobs

and whose evolution is governed by linear stochastic dy-
namics. That is, wobs satisfies

dwobs

dt
= Awobs + Fξ , wobs(t0) = wobs

0 , (1)

where the dynamics matrix A and the forcing matrix F are
real n×n matrices; ξ is Gaussian, spatially uncorrelated,
white-noise with 〈ξ(t1)ξ(t2)T 〉 = δ(t1 − t2)I; the notation
()T denotes transpose. A general deterministic prediction
system has the form

dwpred

dt
= Apredwpred , wpred(t0) = wpred

0 . (2)

Differences between the observed state wobs and the pre-
dicted state wpred are due to (i) differences between the
observed initial condition wobs

0 and the prediction initial
condition wpred

0 , (ii) deficiencies in the approximate dy-
namics Apred and, (iii) the presence of stochastic pro-
cesses in the observations. Here we assume that the
deterministic prediction system is perfect with exact de-
terministic dynamics Apred = A and perfect initial condi-
tions wpred

0 = wobs
0 . In this scenario, the prediction error



w ≡ wobs −wpred evolves according to

dw

dt
= Aw + Fξ , w(t = 0) = 0 . (3)

A more detailed discussion on the perfect initial condition
scenario can be found in Chang et al. (2001). Additionally,
we assume that F is unitary and that the dynamics matrix
A is stable, i.e., all its eigenvalues λi(A) have negative
real part. The eigenvalues of A are ordered so that 0 >
Reλ1(A) ≥ Reλ2(A) · · · ≥ Reλn(A). The assumption of
unitary stochastic forcing is arbitrary and depends on the
choice of inner product.

The prediction error covariance at lead-time τ is de-
fined as Cτ ≡ 〈w(τ)w(τ)T 〉 and given by

Cτ =

∫ τ

0

eAteAT t dt . (4)

Suppose the dynamics matrix A is diagonalizable and
has eigendecomposition A = ZΛZ−1; the matrix Λ of
eigenvalues is an n×n diagonal matrix with diagonal en-
tries λi(A); the eigenvector zi is the i-th column of the
n × n matrix Z and satisfies Azi = λi(A)zi. The matrix
Y of adjoint eigenvectors of A is defined by Y ≡

(
Z−1

)†
where the notation ()† denotes conjugate transpose. We
assume without loss of generality that the columns yi of
Y are unit vectors with y†iyi = 1. Now the prediction er-
ror covariance Cτ can be expressed in the basis of the
eigenvectors of the dynamics as Cτ = ZC̃τZ†. Using the
relation Y†Z = Z†Y = I, the matrix C̃τ is determined by

C̃τ = Y†CτY =

∫ τ

0

eΛtY†YeΛ†t dt = Y†Y ◦ Eτ , (5)

where the notation ◦ denotes Hadamard product1, and
the entries of the positive semidefinite matrix Eτ are

[Eτ ]ij =

∫ τ

0

e(λi(A)+λj(A))t dt =
e(λi(A)+λj(A))τ − 1

λi(A) + λj(A)
.

(6)
The matrix Eτ depends only on the lead-time τ and the
eigenvalues of the dynamics. The dependence of the pre-
diction error covariance on the eigenvalues of the dynam-
ics and on the adjoint eigenvectors Y is shown by the
representation Cτ = Z

(
Y†Y ◦ Eτ

)
Z†.

This dependence is particularly clear in the special
case when A has a complete set of orthogonal eigen-
vectors, i.e., when the dynamics is normal. In this case,
Y†Y = I and Cτ = Z(diag Eτ )Z†. The eigenvalues
λi(Cτ ) of the prediction error covariance Cτ are given by

λi(Cτ ) = λi(diag Eτ ) =
e2 Reλi(A)τ − 1

2 Reλi(A)
, (7)

recalling that Reλi(A) < 0. The eigenvalue λi(Cτ ), the
variance explained by the i-th eigenvector or EOF of Cτ ,

1The Hadamard product of two matrices X and Y with en-
tries Xij and Yij , respectively, is the matrix whose entries are
XijYij .

depends only on the distance in the complex plane from
λi(A) to the imaginary axis. Consequently, useful mea-
sures of the error covariance size, such as tr Cτ and
det Cτ , are entirely determined by the eigenvalues of A
for normal dynamics. When the dynamics matrix A is
normal, the i-th eigenvector of Cτ is zi, if zi is real (equiv-
alently, if λi(A) is real); when λi(A) is complex, Cτ has
a repeated eigenvalue and two nonunique eigenvectors
Re zi and Im zi. Remarkably, for normal dynamics the
eigenvectors of Cτ are independent of the lead-time τ .

For general nonnormal dynamics, the prediction error
covariance is less simply described and its size not fully
determined by the eigenvalues of the dynamics matrix A.
However, there are useful estimates for the eigenvalues
of Cτ that depend on the eigenvalues of the dynamics
matrix A. For instance, the variance explained by the
leading eigenvector of Cτ has the lower bound

λ1(Cτ ) ≥ y†1Cτy1 =
e2 Reλ1(A)τ − 1

2 Reλ1(A)
. (8)

Physically, this means that more variance is explained by
the first eigenvector of Cτ for nonnormal dynamics than
for normal dynamics with the same eigenvalues. The trail-
ing eigenvalue of Cτ is bounded above by

λn(Cτ ) ≤ y†nCτyn =
e2 Reλn(A)τ − 1

2 Reλn(A)
. (9)

This means that the trailing eigenvector of Cτ explains
less variance for nonnormal dynamics than for equiva-
lent normal dynamics. Together, these inequalities show
that the condition number λ1(Cτ )/λn(Cτ ) of the predic-
tion error covariance matrix Cτ is larger for nonnormal
dynamics than for equivalent normal dynamics. Large
condition number is a necessary condition for low-rank
approximations (Tippett et al., 2000). The condition num-
ber can also be used to bound maximum growth ‖etA‖2 ≤
λ1(C∞)/λn(C∞) (Hewer and Kenney, 1988).

Similar lower bounds for the total variance and volume
in phase-space of the error variance matrix Cτ are:

tr Cτ ≥ tr Eτ ; (10)

det Cτ ≥ det(diag Eτ ) . (11)

The right-hand-sides of (10) and (11) are the total vari-
ance and phase-space volume of the error covariance of
a normal system with the same eigenvalues; (10) is due
to Ioannou (1995); (11) is Lemma 2 of the Appendix. The
relations in (8),(10) and (11) lead to the general conclu-
sion that global measures of prediction error are larger
at all lead-times for nonnormal dynamics than for normal
dynamics with the same eigenvalues. Next we compare
the predictability of normal and nonnormal systems.

3. PREDICTABILITY

Prediction utility at lead-time τ depends on the size of
the prediction error covariance Cτ relative to the climato-
logical covariance C∞. Here, we use measures of pre-
dictability defined by the eigenvalues of the predictive in-
formation matrix Gτ ≡ C−1

∞ Cτ (Schneider and Griffies,



1999). The predictive information matrix is a multivari-
ate generalization of the univariate relative error vari-
ance σ2

τ/σ
2
∞ where σ2

τ is the prediction error variance at
lead-time τ and σ2

∞ is the climatological variance. We
consider measures of predictability that are multivariate
generalizations of the univariate predictability measure
1− σ2

τ/σ
2
∞.

The eigenvalues of Gτ are invariant with respect to lin-
ear transformations of the state variable w since if we
define a new variable ŵ = Lw and its prediction error
covariance Ĉτ ≡ 〈ŵ(τ)ŵ(τ)T 〉, the new predictive infor-
mation matrix Ĝτ ≡ Ĉ−1

∞ Ĉτ is related to Gτ by a similarity
transformation

Ĝτ =
(

LC∞LT
)−1 (

LCτLT
)

= L−TC−1
∞ CτLT . (12)

Therefore, predictability measures defined by the eigen-
values of the predictive information matrix Gτ are, unlike
the error growth, invariant with respect to linear transfor-
mations. The assumption of unitary forcing is, however,
dependent on the choice of inner product. Initially, the
prediction error is zero and consequently the predictive
information matrix G0 is zero. In the limit of large lead-
time τ , the prediction error is identical with the climato-
logical variability and G∞ = I. The eigenvalues of Gτ are
between zero and unity for intermediate lead-times since
if λ is an eigenvalue of Gτ with eigenvector p, then

λ =
pTCτp

pTC∞p
, (13)

and pTC∞p ≥ pTCτp > 0. The spatial pattern p that
minimizes the ratio in (13) is the first predictable pattern
and the associated λ is its relative error variance (Schnei-
der and Griffies, 1999). The eigenvalues of Gτ increase
with lead-time, i.e., if τ1 ≤ τ2, then λi(Gτ1) ≤ λi(Gτ2).

Predictable patterns and their relative error variances
are simply related to the dynamics when the dynamics is
normal. In this case, the predictive information matrix Gτ
has the simple form

Gτ = C−1
∞ Cτ = Z diag(E∞)−1 diag(Eτ )Z−1 , (14)

since Y = Z. Additionally, (14) is the eigendecomposition
of Gτ so that the eigenvalues of Gτ are

λi(Gτ ) = 1− e2 Reλn−i+1(A)τ (15)

with eigenvectors of Gτ being the corresponding eigen-
vectors of the dynamics. The first predictable pattern of a
system with normal dynamics is the leading eigenvector
z1 of the dynamics.

In the general case, the prediction error covariance Cτ
can be written as

Cτ = C∞ − eτAC∞e
τAT , (16)

so that

Gτ = C−1
∞ Cτ = I− C−1

∞ eAτC∞e
AT τ . (17)

The eigenvalues of Gτ are then

λi(Gτ ) = λi(I− C−1
∞ eτAC∞e

τAT )

= λi(I− C−1/2
∞ eτAC∞e

τAT C−1/2
∞ )

= λi(I−WτWT
τ )

= 1− σ2
n−i+1(Wτ ) ,

(18)

where we introduce the matrix Wτ ≡ C−1/2
∞ eAτC1/2

∞ .
Consequently, the eigendecomposition of Gτ is deter-
mined by the singular value decomposition of Wτ . The
eigenvectors of Gτ are obtained by applying C−1/2

∞ to the
left singular vectors of Wτ .

The matrix Wτ is invertible for finite τ since its eigen-
values are given by λi(Wτ ) = eλi(A)τ . When the dynam-
ics is normal, Wτ is normal and σ2

i (Wτ ) = |λi(Wτ )|2.
Therefore, a comparison between the singular values and
eigenvalues of the matrix Wτ is equivalent to comparing
the eigenvalues of the predictive information matrix Gτ
for general dynamics and for equivalent normal dynam-
ics. For instance, from the general property σ2

1(Wτ ) ≥
|λ1(Wτ )|2, it follows that λn(Gτ ) ≤ 1− e2 Reλ1(A)τ . Phys-
ically this means that the relative error of the first pre-
dictable pattern of a nonnormal system is less than or
equal to that of a normal system with the same eigenval-
ues.

A simple global predictability measure is the quan-
tity 1 − 1/n tr Gτ . This measure is more useful than
tr Cτ/ tr C∞ since it is invariant under linear change of
state variable. For normal dynamics,

1− 1

n
tr(Gτ ) =

1

n

n∑
i=1

e2 Reλi(A)τ . (19)

This measure of predictability is larger for general non-
normal dynamics since

1− 1

n
tr Gτ =

1

n

n∑
i=1

σ2
i (Wτ ) ≥ 1

n

n∑
i=1

|λi (Wτ )|2

=
1

n

n∑
i=1

e2 Reλi(A)τ ,

(20)

where we have used inequality (32).
Another global predictability measure is the predictive

power ατ defined by (Schneider and Griffies, 1999)

ατ ≡ 1− (det G)1/2n . (21)

The predictive power for normal dynamics is, using (7),

ατ = 1−
n∏
i=1

(
1− e2 Reλi(A)τ

)1/2n

. (22)

The predictive power is larger for general nonnormal dy-
namics since Lemma 4 of the Appendix gives that

det (Gτ ) = det
(

I−WτWT
τ

)
≤

n∏
i=1

(
1− e2 Reλiτ

)
.

(23)
Similar arguments show that nonnormality increases pre-
dictability as measured by relative entropy defined in
Kleeman (2001).
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Figure 1: Predictability of the normal θ = 0 (gray
line) and nonnormal θ = π/2 + 0.05 (black line) sys-
tem in (24).

4. THEORETICAL EXAMPLE

Consider the dynamics matrix A given by

A =
λ

zTy
zyT + λI , ‖z‖ = ‖y‖ = 1 , (24)

where zTy 6= 0, λ < 0 and ε > 0. This dynamics has
two real, negative eigenvalues λ and 2λ, and is normal
when the unit vectors z and y are parallel and nonnor-
mal otherwise. The angle θ between z and y is given by
cos θ = zTy. Initial transient growth is arbitrarily large as
the angle θ is approaches π/2. The relation

etA = eλt
(

sec(θ)
(
eλt − 1

)
zyT + I

)
, (25)

can be used to calculate the prediction error covariance.
In the special case that n = 2 and A is a 2× 2 matrix, we
find that

1− 1

2
tr Gτ ≈

1

2
e2λ τ

(
9− 16 eλ τ + 9 e2λ τ

)
(26)

where the terms neglected are O (θ − π/2)2. In a normal
system with the same eigenvalues

1− 1

2
tr Gτ =

1

2
e2λ τ

(
1 + e2λ τ

)
. (27)

Initially the predictability of the normal and nonnormal
system is the same. The predictability of the nonnormal
system is larger by a factor of nine for large lead-times,
independent of λ. Figure 1 shows the nonnormal and
equivalent normal system predictability for θ = π/2+0.05
and λ = −1/6.

5. DISCUSSION

The purpose of this study is to explore theoretically the
relationship between deterministic dynamics and pre-
dictability in general linear stochastic systems, without
reference to any specific system. We consider general
predictability definitions that depend on the spectrum of
the predictive information matrix. The main result is that

normal-mode analysis provides lower bounds for pre-
dictability. Nonnormality can simultaneously produce er-
ror growth and predictability that is larger than that in nor-
mal systems with the same eigenvalues. In a simple the-
oretical example, a system with nonmodal growth exhibits
both enhanced error growth and predictability.

Computation of the complete spectrum of the predic-
tive information matrix is impractical when the forecast
error covariance is incompletely known. Therefore it is of
practical value to note that lower bounds for predictability
obtained from normal mode analysis are also valid when
a truncated set of trailing eigenvalues of the predictive in-
formation matrix are used.

The assumption of unitary stochastic forcing is arbi-
trary and introduces an undesirable dependence on the
choice of inner product. Work to be reported elsewhere
examines the impact of general forcing on predictabil-
ity. We find that normal mode analysis also gives lower
bounds for predictability for general, nonsingular stochas-
tic forcing.

APPENDIX

Lemma 1 (Oppenheim’s inequality). Let A = (aij) and
B = (bij) be positive semidefinite matrices. Then (Horn
and Johnson, 1985)

det(A ◦ B) ≥

(
n∏
i=1

aii

)
det B . (28)

Lemma 2. Suppose Cτ = Z
(
Y†Y ◦ Eτ

)
Z† with Y =(

Z−1
)†

and the entries of the matrix Eτ are

[Eτ ]ij =

∫ τ

0

e(λi+λj)t dt =
e(λi+λj)τ − 1

λi + λj
. (29)

Then, det Cτ ≥ det diag(Eτ ).

Proof. First we show that Eτ is positive semi-definite be-
cause it is a Gram matrix. The functions hi(t) = eλit,
0 ≤ t ≤ τ are in the space L2([0, τ ]). The inner product
in this space is

(hi, hj) ≡
∫ τ

0

hihj dt =

∫ τ

0

e(λi+λj)t dt = [Eτ ]ij . (30)

Now,

det Cτ = det
(

Z
(

Y†Y ◦ Eτ
)

Z†
)

= det
(

Z†Z
)

det
(

Y†Y ◦ Eτ
)

≥ det
(

Z†Z
)

det
(

Y†Y
)

det(diag(Eτ ))

= det(diag(Eτ )) ,

(31)

where we use (28) and det
(
Z†Z

)
det
(
Y†Y

)
= 1.

Lemma 3 (An inequality of Weyl). Suppose that W is
invertible. Then, for s > 0 (Marcus and Minc, 1992, II.4.2)

k∑
i=1

σsi (W) ≥
k∑
i=1

|λi(W)|s , k = 1, 2, . . . , n . (32)



Lemma 4. Suppose that W is an n × n matrix with
σ1(W) < 1 and σn(W) > 0. Then

det
(

I−WWT
)
≤

n∏
i=0

(
1− |λi(W)|2

)
. (33)

Proof. Since

det
(

I−WWT
)

=

n∏
i=0

λi
(

I−WWT
)
, (34)

and the eigenvalues of I−WWT are 1−σ2
i (W), it remains

to show that
n∏
i=0

(
1− σ2

i (W)
)
≤

n∏
i=0

(
1− |λi(W)|2

)
. (35)

We generalize the proof of Marcus and Minc (1992,
II.4.2). Since σn(W) > 0 we can take the logarithm of
both sides of (Marcus and Minc, 1992, II.4.1(9))

k∏
i=1

σi(W) ≥
k∏
i=1

|λi(W)| , k = 1, 2, . . . , n , (36)

with equality for k = n, to give

k∑
i=1

log σi(W) ≥
k∑
i=1

log |λi(W)| , (37)

with equality for k = n. The entries of the two n-vectors
u and v defined by u ≡ {log |λ1(W)| , . . . , log |λn(W)|}
and v ≡ {log σ1(W), . . . , log σn(W)} are negative and
related by u = Sv where S is some doubly stochastic
matrix (Marcus and Minc, 1992, II.3.5.4). The function

f(x1, . . . , xn) =

k∑
i=1

− log(1− e2xi) (38)

is a convex function on (−∞, 0)n since − log(1 − e2x)
is convex for x < 0. Consequently, g(R) ≡ f(Rv) is a
convex function on the set of doubly stochastic matrices
R (Marcus and Minc, 1992, II.4.1.2). In addition, g(R) ≤
g(P) for some permutation matrix P (Marcus and Minc,
1992, II.4.1.4). Thus taking R = S gives,

f(u) = f(Sv) = g(S) ≤ g(P) = f(Pv) . (39)

Substitution gives

−
k∑
i=1

log
(
1− |λi(W)|2

)
≤ −

k∑
i=1

log
(
1− σ2

s(i)(W)
)
,

(40)
for some permutation s. Since the logarithm is an increas-
ing function it follows that

k∑
i=1

log
(
1− σ2

s(i)(W)
)
≥

k∑
i=1

log
(
1− σ2

i (W)
)
, (41)

for any permutation s. Finally,

k∑
i=1

log
(
1− σ2

i (W)
)
≤

k∑
i=1

log
(
1− |λi(W)|2

)
(42)

and, the theorem follows.
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