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1. INTRODUCTION

Opportunities in the field of weather risk
assessment continue to grow. Estimates that have
been quoted in various media suggest that as
much as 80 % of economic interests in the US
should be considered sensitive to the atmospheric
environment in some way. Weather risk can be
divided more-or-less into two fundamental
categories: extreme events and �regional climate
anomalies�.

Examples of extreme events would include a
hurricane, flood, or windstorm. Within the
insurance industry and the media, such events are
often referred to as �catastrophes�.

Regional climate anomalies are a consequence
of weather that is both persistent (lasting weeks or
months) and unusual for the region within which it
occurs. The farther from normal weather
conditions are, the greater the economic impact.
Examples could include a drought, a heat wave or
even a persistently cloudy season where the
regional economy depends on a lot of sunshine.
There are many other possibilities. Regional
climate anomalies often include the contribution of
extreme events (for example, a record-breaking
cold wave); however, they may occur merely
because of persistently �unseasonable� but
otherwise unremarkable weather.

Traditionally, the potential costs of catastrophic
risk, including those presented by extreme weather
events, have been transferred, or dispersed,
through various insurance instruments. This is true
for both corporate interests and individuals.
Understandably, the insurance industry has been
interested in �catastrophic event� risk modeling
and loss mitigation for a long time.

On the other hand, costs arising from regional
climate anomalies have been borne by businesses
under operational expenses. Recently, weather
risk of this kind has begun to be addressed using

financial instruments called �Weather Derivatives�,
especially for the energy sector in the US. As
energy markets have been deregulated, use of
these instruments has increased. Weather
derivatives are also beginning to emerge in other
countries, especially in Europe.

Numerical Weather Prediction (NWP) models
have played an important role in public safety and
damage mitigation for extreme weather events for
years. For example, for years they�ve been
included as part of the �tool set� at NOAA�s
National Hurricane Center to provide guidance in
hurricane intensity, track and landfall forecasts.
The emergence of ensemble NWP modeling
technology has broadened the ways in which NWP
models can be applied for weather and climate
forecasts in general and in the area of weather risk
assessment in particular.

2. BACKGROUND

Some background will be provided in this paper
on weather risk assessment in the context of
extreme weather events, or catastrophes.  This is
because it is anticipated that other contributors�
presentations in this session will be expanding on
how weather derivatives can be used to �hedge�
weather risk.

Within the insurance industry, a catastrophe is
defined as any single event that causes insured
damages exceeding $25 million. To the insurance
industry, the advantages of risk modeling are
manifest. An improperly insured catastrophe has
the potential to bankrupt individual companies and
adversely affect the industry in general. Few other
events have the potential to impact company
results so quickly or with such devastating results.
Table 1 shows the ten largest insured losses
resulting from weather catastrophes.



TABLE 1
Year Weather Event Losses

1992 Hurricane Andrew (US) 19.1
1999 Storms Lothar-Martin (France

Germany, Switzerland)
8.0

1991 Typhoon Mireille (Japan) 6.9
1990 Storm Daria (NW Europe) 5.8
1989 Hurricane Hugo (US,

Caribbean)
5.7

1987 October Storm (UK, France) 4.4
1990 Storm Vivian (NW Europe) 4.1
1998 Hurricane georges (US) 3.6
1999 Typhoon Bart (Japan) 3.0
1972 Hurricane Agnes (US) 2.9

*(Insured losses billion $US. Source: Swiss Re
Sigma, January 2000)

Traditional actuarial methods usually require
large, accurate historical data sets that are non-
existent for weather-related catastrophes. In
response, computer-based natural catastrophe
(CAT) models began to be developed in the late
1980s. The first CAT model using a natural hazard
basis estimated insured losses resulting from
hurricanes making landfall on the US coast. It was
not until after Hurricane Andrew in 1992 that they
began to become widely used.

Combining the contributions of natural hazard
and engineering-impact models (Figure 1), CAT
models provide insurance and reinsurance
companies a more sophisticated understanding of
their risks than was possible previously. With an
even modestly capable computer, a user can
simulate thousands of storm scenarios. The result
is a far more complete statistical picture of a range
of potential-loss outcomes than can be obtained by
conventional actuarial methods. Models of this
type, often referred to as stochastic CAT models,
are becoming increasingly sophisticated.

In recent years, firms have developed a new
class of financial instruments (often referred to as
�securitizations� or �CAT bonds�) that transfer
insurance risk to the capital markets.
Approximately $12.6 billion capital-market risk
transfers have been issued since 1996. A Swiss
Re Sigma study sees a tenfold growth in insurance
risk securitizations over the next decade. The
study concludes that these securities have vast
market potential. Annual issuance of catastrophe
bonds, now about $1 billion, is expected to reach
$10 billion by 2010.

CAT models have also been developed for
real-time extreme weather events (Figure 2).
Short-term CAT predictions provide information

Figure 1. The CAT model loss estimation process.

Figure 2. Real time access of loss estimates
through the Internet.

that is used to reduce the costs associated with
damaging storms. Preventable costs include
increased efficiency in the assignment of claims
adjusters, liquidation of assets (to raise cash to
settle claims) and documentation of damage. Real
time CAT model implementations lend themselves
well to traditional applications of NWP models.



3. QUANTIFYING FORECAST UNCERTAINTY
USING ENSEMBLE NWP MODELS

That NWP models have inherent uncertainty
has been known for at least 40 years (Lorenz,
1963). Within a few years, this revelation was
reflected in operational weather forecasts that
included some gesture toward a probabilistic
interpretation. One early example is the "chance
of" percentages that have commonly accompanied
US National Weather Service forecasts since the
1960s. Another example is �model output
statistics� (MOS) in which model-predicted
outcomes are statistically related to observed
outcomes for a large number of forecasts.

The level of uncertainty is related to
atmospheric predictability. It is well established
that the atmosphere�s predictability is not constant,
but depends on its initial state. Figure 3 illustrates
the phase-space evolution of uncertainty on the
Lorenz (1963) attractor for two different initial
conditions. NWP model forecasts provided as an
ensemble provide a probability distribution of
possible future outcomes.

Techniques for quantifying the economic value
of probabilistic forecasts in the decision-making
process have been developed over the years.
Recently, an international team of those working
on this topic has submitted a review paper to the
Bulletin (Zhu, et al., 2001). A comprehensive
development on this subject in the more general
context of predicting uncertainty can be found in
Palmer (2000).

Figure 3. The Lorenz (1963) attractor.

Decision models based on cost-loss analyses
of probabilistic NWP model output lead to the
result that precautionary measures should be
taken if

P > C/Lp.

Here P is the calibrated probability of occurrence
(caused by the extreme events or anomalous
conditions discussed earlier), C is the cost of
taking the precautions and Lp is the preventable
loss suffered because precautionary measures
were not taken. An example of a preventable loss
might be the difference between the higher cost of
raising cash to pay for losses immediately after a
catastrophe minus the lower cost of raising cash
well before it is needed. In practice, individual
organizations would determine the appropriate
cost-loss ratio C/Lp criteria depending on their own
situations.

It is important that the probability of occurrence
be calibrated. What this means is simply that when
10 % of an ensemble�s members are predicting an
event to occur, they have historically verified 10 %
of the time. It should also be understood that the
advantages of this approach, in many cases,
would only be realized by applying it over time.

Another appealing aspect of decision models
based on the cost-loss analysis theory is that it
provides the highest value when the cost-loss
ratio, C/Lp, is near the climatological frequency. It
is reasonable to assume that the economic system
in general, and the insurance industry in particular,
are �tuned� to minimize losses based on the
climatological frequency of extreme events and
climate anomalies. This implies that the cost-loss
ratio C/Lp (and the decision probability threshold,
P) should be relatively well defined in most cases.

It is possible to apply the P > C/Lp decision rule
to �deterministic� forecasts based on probabilities
estimated from MOS. For example, over many
years whenever an NWP model has predicted a
maximum wind speed at some location of 30 m/s,
the observed speed exceeds 20 m/s 80 % of the
time. The uncertainty associated with this
traditional approach is generally higher since the
statistics are applied to atmospheric states with
both higher and lower predictability. Some
improvement may be possible with MOS
applications that include the conditional climatology
of analogue initial conditions, but ensembles can
account for the predictability of the current
atmosphere more directly.



4. NWP MODEL ENSEMBLES AND WEATHER
RISK ASSESSMENT: DEFINITIONS OF
CLASS 1 AND CLASS 2 APPLICATIONS

Since uncertainty is fundamental to quantifying
the state of atmosphere, a probabilistic framework
can be considered appropriate, if not practical, for
many NWP model applications. In this context, the
notion of deterministic prediction is defined as the
ability for an NWP modeling system to simulate the
evolution in both the phase and amplitude of an
important feature (or features) of the atmospheric
circulation accurately.

The theoretical limit for deterministic prediction
depends on how well the forcing, internal or
external, responsible for a particular feature is
known. How well the forcing is known depends on
the nature (i.e., its forcing mechanisms, spatial and
temporal scale) of the feature under consideration.
For example, for transient internal eddies, such as
the frontal waves and extra-tropical cyclones, the
limit is about ten days. On the other hand, regional
climate anomalies are often a result of a forced
circulation. The best known examples are regional
anomalies that result from changes in the large-
scale atmospheric circulation forced by the El Nino
� Southern Oscillation (ENSO) phenomenon.

Unfortunately, at the current state of modeling
technology, no forcing mechanism can be
quantified accurately (with perhaps the exception
of the annual solar cycle) beyond one year. After
about one-year, all forcing mechanisms dealt with
in the NWP model become internal and the model
is, effectively, a General Circulation Model (GCM).
While a NWP model used as a GCM can be useful
as a heuristic tool for understanding the Earth-
atmosphere system, it has less value as a
predictive tool, since all forcing mechanisms are
artifacts generated internally by the model physics.

It is convenient to divide ensemble NWP model
applications into two general classes: those that
produce probabilistic predictions and those
producing probabilistic statistics of important
weather elements. The former class of
applications, where the forcing mechanisms for a
feature of interest are well defined, corresponds to
an extension of traditional deterministic NWP
model techniques into the formal probabilistic
framework. One example of the latter class of
applications would be determining how the mid
latitude storm-climate is affected by surface
anomalous (of which the ENSO phenomenon
mentioned earlier is an extreme example).

4.1 Examples of Class 1 Applicatons:
Prediction of Individual Extreme Events

Ensemble NWP model output is available from
the National Centers for Environmental Prediction
(NCEP) via the Internet. NCEP�s Medium Range
Forecast (MRF) model ensemble system runs
twice per day at 00Z and 12Z. In addition to the
standard 2.5°X2.5° grid, there is a high-resolution
model 1°X1° grid. High-resolution MRF ensembles
consist of 12 members for the 00Z cycle and 11
members for the 12Z cycle.

These files are in GRIB format. The easiest
way to extract data from them is to use a utility
called wgrib. Wgrib has versions that run on
various computers, including computers with
Windows and UNIX operating systems.

These data sets provide an opportunity to add
value to real time loss estimates (Figure 2). One
example, in which an ensemble of hurricane tracks
has been created using high-resolution MRF
ensemble model output for a hypothetical storm, is
shown in Figure 4. Using an ensemble of tracks
landfall probabilities can be estimated (Table 2).

Figure 4. Ensemble of hurricane tracks determined
from 12-member high-resolution MRF ensemble
model output.



TABLE 2
Latitude Band Landfall Probability

24° - 25° 0.250
25° - 26° 0.083
26° - 27° 0.417
27° - 28° 0.083
28° - 29° 0.083
29° - 30° 0.000
30° - 31° 0.083

Organizations choosing to invest in an in-house
ensemble NWP modeling capability have more
flexibility. By having complete control of this
technology, model-system attributes such as
resolution, sampling rate, model physics and
number of ensemble members can be set
depending on end-user requirements.

A 16-member sample of maximum-wind speed
fields for the great European windstorm Daria from
AIR�s 55-member ensemble NWP model is shown
in Figure 5. In January 1990, storm Daria

Figure 5. A subset of a 55-member ensemble of
maximum wind speeds occurring during storm
Daria (January 1990).

devastated northwestern Europe (see Table 1). If
impact models (Figure 1) are adapted to accept
ensemble output, probability distribution functions
(PDFs) can be produced. Figure 6 shows the PDF

resulting from the loss distribution calculated using
the 55-member Daria ensemble. The median loss
for this ensemble was $6.3 billion.

Figure 6. PDF of insured losses for storm Daria.

While most losses for this case cluster near the
median, there is one notable exception. One of the
results indicated insured losses in excess of $35
billion. This example illustrates an important
aspect of extreme events. Very large ensembles
must be generated to resolve events of this type
appropriately. Although one of the 55 members
indicated this enormous loss, it does not
necessarily mean that there was a 1 in 55 (0.018)
probability of occurrence. A much larger number of
members would need to be used to resolve its
probability with more certainty. Losses of this
magnitude might never occur again were the
ensemble increased, for example, to 10,000
members. In that case, its probability of
occurrence would be reduced to 0.0001.

4.2 An Example of Class 2 Application: Regional
Extreme-Event Climate Models

Regional climate models (RCMs) are NWP
models that are nested in global-scale models.
Since RCMs are run at a higher resolution than
global scale models, they can be effective in
determining statistics for smaller scale
phenomena. This is often referred to as �down
scaling�.   RCM applications have been developed
to down scale both prognostic and global data-
assimilation climate models. The example
discussed here will involve an application of the
latter case in order to enhance the hazard
component of a stochastic CAT model (Figure 1).



While there are several global data-assimilation
climate models, perhaps the best known is that of
the National Center for Atmospheric Research
(NCAR) and NCEP. (Kistler, et al., 2001). One
motivation for the global reanalysis project is to
use a single data assimilation technique and
archived data to produce the most accurate and
statistically stationary record of the atmosphere
possible. Other global reanalysis model projects
include those at the European Centre for Medium-
Range Weather Forecasts (ECMWF) and NASA
Goddard.

Data from the global reanalysis data is used to
produce �canonical ensembles� of windstorms
caused frontal cyclones affecting the European
region. Canonical ensembles are families of
events spawned from historical storms having
similar, specific characteristics. The canonical
storm events �captured� in the assimilation model
process reflect the storm environment in this
region over the past few decades (Figure 7). Slight
perturbations to the state-of-the-atmosphere
variables at the time of these events can change
the trajectory of development significantly (see

Figure 7. Schematic showing how statistics of
European regional storm climate can be captured
in the global reanalysis model data set.

Figure 3). A large ensemble of storm events (many
thousands) can be generated, some of which will
be stronger and others less strong than the
historical seed events captured in the global
reanalysis model data (Figure 8). Very large
ensembles are practical for Class 2 applications
because they need not be created in real time.

Figure 8. Schematic illustrating the canonical
ensemble generation process

In one particular Class 2 application, a
�generalized� reanalysis storm-wind climate for
10,000 years has been created to provide the
hazard component of the �stochastic� CAT model
using 40 years (1958-1997) of NCAR/NCEP
reanalysis model data. Using an NWP model
allows for the generation of storms that are more
intense than those observed. An NWP model can
also limit the intensity of potential storms through
dynamical and physical constraints. Figure 9
shows the maximum-annual wind speed, down-
scaled using the RCM to a 10-km footprint and an
equivalent three-second gust at 10 m. It can be
seen that the 40-year historical profile can be
considered a subset of a generalized 10,000-year
reanalysis climate.



Figure 9. Exceedence distribution of maximum
annual wind speeds for the 40-year and
generalized reanalysis-model wind climate for
northwest Europe.

5. SUMMARY

In the changing world of insurance risk
management, catastrophe (CAT) models are
moving to the center of quantitative weather risk
assessment. These models offer significant
benefits for the companies that use them through
automation, and the ability to manage risks and set
rates proactively. Because these models help
insurance companies to better understand the
complexities of their risks, they can allocate capital
more efficiently than before and remain more
competitive.

Ensemble NWP modeling provides the means
to quantify forecast uncertainty. Using the output
from the ensemble members, a probability density
function (PDF) of potential losses can be created.
Further, once the performance and reliability of an
NWP ensemble model forecast system is
characterized, its economic value as a function of
cost-loss ratios (C/Lp) can be determined.

Two classes of ensemble NWP model
applications have been defined for CAT loss
estimation. �Class 1� applications can provide
probabilistic loss forecasts for real-time extreme
events. �Class 2� applications involve the
characterization of the losses that would be
expected within a region�s natural climate
variability (often referred to as �regional loss
profiles�). An example for each was discussed.
Other Class 1 applications include medium range

(three to seven day) predictions of individual
events. Class 2 applications would include
alternative regional loss profiles created from
seasonal climate predictions.

CAT models are continuing to become more
sophisticated, and some have begun to
incorporate NWP modeling technology. As the cost
of computers and networks decreases, the
insurance industry should find that the benefits of
ensemble NWP modeling technology more cost
effective.
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