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1.     INTRODUCTION 
As the world’s preeminent climatic data archive, the 

National Climatic Data Center (NCDC) manages both 
observational data and the metadata necessary to 
interpret them.  Chief amongst these metadata is station 
history – the changes to a station’s identity, location, 
configuration and observing practices over time. 

Working with contractors under the auspices of the 
Climate Database Modernization Program (CDMP), 
NCDC has developed an Oracle-based station history 
database to accommodate stations from a variety of 
climatological observing systems.  The project 
presented a variety of challenges, some logistical, some 
data-related, some conceptual and some architectural 
(Arnfield, 2000).   

The database has more than 130 tables, each 
representing a fact about a station, like its 
instrumentation or the phenomena observed, or a 
relationship between two facts, such as which 
instrument is used to observe which phenomenon. To 
remove dependency on external identifiers beyond our 
control, like Coop and WMO IDs, these tables are linked 
using a numerical, non-information bearing Station Key. 

A system of this scope almost always presents 
challenges. Two key architectural hurdles were 
managing the sometimes disparate periods of validity 
found in various tables and logging the changes made 
to rows in each table.  We will examine these two issues 
and their respective solutions here. 
 
2.     RESOLVING VALID DATE RANGE OVERLAPS 

Each component of a station – its location, 
equipment, observers, reporting methods, even its 
identity – can change independently of other 
components; thus, each component may have its own 
unique period of validity.  This temporal aspect of a 
station’s configuration is critical to interpreting its 
reported observations, since observations may be 
affected by changes in location, instrumentation or 
observing protocol.  In the database, the period of 
validity for each row in each data table is represented 
using a begin date column and an end date column.    

There are many possible views of a station’s 
configuration data, each drawing details from columns in 
different tables to produce a composite.  The date 
ranges in one table often span or are eclipsed by those 
in other tables, making queries and reporting complex. 

Each composite row in a view will have its own period of 
validity, derived from the period of validity for each 
component in the view.   

Short of a programmatic solution for each query, 
view and report, how does one determine the begin date 
and end date for each row?  How does one combine the 
date ranges from various tables to produce a coherent 
row of data?   
 
2.1     An Example 

Consider a simple report showing a station’s name, 
Coop ID, primary temperature instrument and time of 
temperature.  The report requires a join of three tables, 
with each row in each table containing its own begin 
date and end date.  However, because the name, ID, 
instrumentation and time of observation may change 
independently, none of the tables contains the correct 
dates for each row in the entire view.   A simplified 
version of the three tables and the desired output, 
extracted for a single station, is shown in Figure 1.    
 

FIGURE 1 
Station Name 

Station 
Key 

Name Begin Date End Date 

2000023 ANNISTON MUNICIPAL 
ARPT 

06/01/1948 07/01/1967 

2000023 ANNISTON FAA AIRPORT 07/01/1967 08/14/1995 
2000023 ANNISTON FAA AP 08/14/1995 06/17/1998 
2000023 ANNISTON METRO AP 06/17/1998 12/31/9999 
  

Station ID (showing Coop IDs only) 
Station 
Key 

ID Type ID Begin Date End Date 

2000023 Coop number 010272 06/01/1948 08/01/1949 
2000023 Coop number 014734 08/01/1949 03/01/1950 
2000023 Coop number 010272 03/01/1950 12/31/9999 
  

Station Phenomenon Observing Protocol 
Station 
Key 

Phenom 
enon 

Instru 
ment 

Obs 
Time 

Begin Date End Date 

2000023 Temp MXMN 2400 01/01/0000 08/14/1998 
2000023 Temp HYGR 2400 06/17/1998 12/31/9999 
 

Resulting Composite View 
Station 
Key 

Begin 
Date 

End Date Coop 
ID 

Name Inst. Obs 
Time 

2000023 06/01/1948 08/01/1949 010272 ANNISTON 
MUNICIPAL 
ARPT 

MXMN 2400 

2000023 08/01/1949 03/01/1950 014734 ANNISTON 
MUNICIPAL 
ARPT 

MXMN 2400 

2000023 03/01/1950 07/01/1967 010272 ANNISTON 
MUNICIPAL 
ARPT 

MXMN 2400 

2000023 07/01/1967 08/14/1995 010272 ANNISTON 
FAA 
AIRPORT 

MXMN 2400 

2000023 08/14/1995 06/17/1998 010272 ANNISTON 
FAA AP 

MXMN 2400 

2000023 06/17/1998 12/31/9999 010272 ANNISTON 
METRO AP 

HYGR 2400 
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When two tables are joined so that values may be 
extracted from both, the database determines which 
rows to combine by comparing values in one or more 
columns in each table.  Where the values match, data 
from both rows are included in the query result.  If one 
does not carefully specify columns for comparison, 
though, spurious matches may occur.  

In the example in Figure 1, joining on only the 
Station Key would produce a result set of 24 rows: all 
three rows for the station in the Station ID table would 
match all the four of station’s rows in the Station Name, 
and each resulting row would match both of the station’s 
rows in the Station Observing Protocol table.  In order to 
get the correct result set of six rows, one must include a 
data comparison so that only contemporary records in 
various tables are matched.  But because the dates in 
one table may not precisely match those in another, this 
is a difficult proposition, involving correlated subqueries.   

Although not illustrated in this example, matters are 
further complicated if one table may contains no data at 
all for a station during a period when another table does 
have data.  A structured query language (SQL) 
technique, the outer join, is useful in resolving this 
problem if only one table may be missing data, but not if 
all three may be missing data. For the outer join to work, 
one table would need to contain all the necessary 
begin/end date pairs for the resulting view.  As we’ve 
already seen, though, none of the tables in the join can 
be counted on for the master list of begin/end dates for 
the final view. 
 
2.2 Possible Solutions 

Several solutions were considered and dismissed.  
One possibility was to make an entry in all tables 
whenever data for a station changed in any table. This 
would result in a matching begin/end date pair in all 
tables.  This simplifies queries, but involves massive 
data duplication and greatly complicates updates. It also 
makes it more difficult to determine when a value has 
changed, because a table may contain be many rows 
for a station, all with different begin/end dates, but all 
containing the same information about the station.  
Because historical data comes from many sources, 
attribution of data would become more complex as well. 

A programmatic approach to combining data from 
various tables is possible.  However, this is 
cumbersome, and presupposes significant programming 
skill and tools on the part of the user. Even skilled 
programmers are unlikely to be familiar with the 
intricacies of a database schema containing more than 
130 tables.  More importantly, though, it fails to solve 
the problem in an ad hoc SQL query environment. 
 
2.3 The Approach Taken 

What was needed was a table containing the date 
pairs for each station for a given view.  Such a table 
would permit all other tables in the view to be outer 
joined to it.  However, creating and maintaining a table 
for each view would be prohibitive.  Instead, we 
designed a subsystem to address the problem for all 
tables in the database and all possible views of the 

data.   Figure 2 shows the Context Chronology 
subsystem’s schema.  This schema, along with 
supporting programs, permits a user to define a view, 
specify the tables from which data will be drawn, and 
then automatically establish and maintain the begin/end 
date pairs needed to produce the view, derived from the 
included tables.   

 
Figure 2 
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A brief discussion of the tables and their roles is in 

order: 
• Station – this is the central table in the 

database; all station-related tables have an 
explicit foreign key relationship to it.  

• Chronology Context – the table in which the 
context, or view, is defined.  It may be used by 
the system, in which case the database 
protects it from deletion.   

• Context Table – this table lists the tables 
contained in the context view.  Our example 
from Figure 1 would require 3 rows (Station 
Name, Station ID, Station Phenomenon 
Observing Protocol). 

• Context Table Row Type – Referring to Figure 
1, we note that the Station ID table has an ID 
Type column.  The table may contain many 
different IDs for a station, but if we are only 
interested in the Coop ID we don’t want date 
pairs from other IDs for the station to be 
included in our view.  This table permits us to 
define the column containing the “type” 
descriptor, and the type descriptor value to 
include in the view.  If we also wanted to 
include the FAA call sign in this report, we’d 
have two “Row Type” rows for the Station ID 
table. 

• Station Chronology Context – An intermediate 
table that links a station to a context.  The build 
date is used by stored procedures to determine 
whether a context must be rebuilt for a given 
station. 

• Station Chronology – Finally, the dates!  This 
table contains the logical begin/end date pairs 
extracted from the tables composing the view. 
It is used to drive the query that extracts data 



from the tables. Each table is outer joined to 
this one, so that any available data is pulled 
from all tables, but absence of data in any table 
does not cause entire composite rows to be 
omitted from the view. 

Data that requires user intervention to remain 
synchronized generally succumbs to entropy, becoming 
inaccurate.  In order to ensure data integrity and 
currency the update process is handled automatically by 
the database itself.  Oracle has a database-level 
construct called a trigger that causes a particular piece 
of code to execute each time a specific event, such as 
inserting, deleting or updating a row, occurs.  Once a 
context view is defined, Oracle triggers automatically 
invoke the stored procedures necessary to maintain 
these date management tables whenever rows in any 
station-related tables in the database are inserted, 
updated or deleted.  This feature may be deferred in 
order to speed data loading, then invoked once the load 
is completed. 
  
3.     LOGGING CHANGES 

The best-intended corrections sometimes overwrite 
valid data.  While mistakes must be corrected, 
discarding original data values may be perilous.  There 
is no audit trail unless the previous value and 
information source are retained when erroneous data 
values are corrected.  To be effective, changes must 
always be logged regardless of how the change is 
made, including by direct database update outside 
control of the user interface.   

 
FIGURE 3 

A single Change Journal table is used to document 
all value changes for all tables.  This approach requires 
a common key structure for all tables for ease of 
management.  A numeric column provides a unique, 
alternate key for each table, and is populated using an 
Oracle sequence number specific to that table.  A 
separate sequence for each table keeps key values, 
and thereby space overhead, small. 

In a system that experienced frequent updates to 
values, the overhead in journaling each column’s 
updates in a separate row might be prohibitive.  
However, in this system rows are updated only to 

correct  errors, not to document changes in 
configuration over time.  Changes over time are noted 
by inserting new rows, not by altering existing ones.   

A simple SQL query will return the modification 
update history for a column:  

SELECT Old_Value, New_Value, New_Value_Source, 
Modified_By, Modified_Date  

FROM Change_Journal 
WHERE TableName = <name of the table> 

AND TableKeyVal = <key value for the row> 
AND ColumnName = <name of the column> 

ORDER BY Modified_Date 
To ensure consistent journaling of changes, the log 

table is automatically maintained by stored procedures 
in the database rather than relying on the application 
developer to properly implement the code.   

An "on update" trigger is created for every logged 
table in the database.  This trigger passes certain critical 
values to a stored procedure, which in turn writes them 
to a single, common Change Journal table.  The 
process is illustrated in Figure 4. 

 
FIGURE 4 

 
If we permit a row in a station detail table to be 

deleted and there are entries in the Change Journal  
table for the row, a trigger on the station detail table 
must handle deleting the change journal entries.   
 
4.     CONCLUSION 

Both the date range handling and change 
journaling, while seemingly complex, have greatly 
simplified the development and increased both usability 
and data integrity of the comprehensive station history 
system.  Performance is always a concern when 
implementing triggered procedures in a database.   In a 
more transaction-intensive environment, either of these 
techniques might require modification, or prove 
unsuitable.  However, the flexibility in querying station 
history data, combined with the ability to audit changes 
made by users, outweighs any performance penalties. 
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CHANGE JOURNAL TABLE STRUCTURE 
TableName – the name of the table in which the 

change occurred 
TableKeyValue – the numeric ID for the row in which 

the change occurred 
ColumnName – the name of column whose value 

was changed 
OldValue – the column’s original value 
NewValue – the column’s new value 
NewValueSource – Foreign key referencing the 

source of the column’s new value 
ModifiedBy -- ID of the user making the change 
ModifiedDate – date/time stamp of when the change 

was made. 


