
J9.10 STATION HISTORY DATABASE ARCHITECTURAL TECHNIQUES

Jeff Arnfield*
 National Climatic Data Center, Asheville, NC

Gary Shears

Sherian Corporation, Morgantown, WV

1. INTRODUCTION
As the world’s preeminent climatic data archive, the

National Climatic Data Center (NCDC) manages both
observational data and the metadata necessary to
interpret them. Chief amongst these metadata is station
history – the changes to a station’s identity, location,
configuration and observing practices over time.

Working with contractors under the auspices of the
Climate Database Modernization Program (CDMP),
NCDC has developed an Oracle-based station history
database to accommodate stations from a variety of
climatological observing systems. The project
presented a variety of challenges, some logistical, some
data-related, some conceptual and some architectural
(Arnfield, 2000).

The database has more than 130 tables, each
representing a fact about a station, like its
instrumentation or the phenomena observed, or a
relationship between two facts, such as which
instrument is used to observe which phenomenon. To
remove dependency on external identifiers beyond our
control, like Coop and WMO IDs, these tables are linked
using a numerical, non-information bearing Station Key.

A system of this scope almost always presents
challenges. Two key architectural hurdles were
managing the sometimes disparate periods of validity
found in various tables and logging the changes made
to rows in each table. We will examine these two issues
and their respective solutions here.

2. RESOLVING VALID DATE RANGE OVERLAPS

Each component of a station – its location,
equipment, observers, reporting methods, even its
identity – can change independently of other
components; thus, each component may have its own
unique period of validity. This temporal aspect of a
station’s configuration is critical to interpreting its
reported observations, since observations may be
affected by changes in location, instrumentation or
observing protocol. In the database, the period of
validity for each row in each data table is represented
using a begin date column and an end date column.

There are many possible views of a station’s
configuration data, each drawing details from columns in
different tables to produce a composite. The date
ranges in one table often span or are eclipsed by those
in other tables, making queries and reporting complex.

Each composite row in a view will have its own period of
validity, derived from the period of validity for each
component in the view.

Short of a programmatic solution for each query,
view and report, how does one determine the begin date
and end date for each row? How does one combine the
date ranges from various tables to produce a coherent
row of data?

2.1 An Example

Consider a simple report showing a station’s name,
Coop ID, primary temperature instrument and time of
temperature. The report requires a join of three tables,
with each row in each table containing its own begin
date and end date. However, because the name, ID,
instrumentation and time of observation may change
independently, none of the tables contains the correct
dates for each row in the entire view. A simplified
version of the three tables and the desired output,
extracted for a single station, is shown in Figure 1.

FIGURE 1
Station Name

Station
Key

Name Begin Date End Date

2000023 ANNISTON MUNICIPAL
ARPT

06/01/1948 07/01/1967

2000023 ANNISTON FAA AIRPORT 07/01/1967 08/14/1995
2000023 ANNISTON FAA AP 08/14/1995 06/17/1998
2000023 ANNISTON METRO AP 06/17/1998 12/31/9999

Station ID (showing Coop IDs only)
Station
Key

ID Type ID Begin Date End Date

2000023 Coop number 010272 06/01/1948 08/01/1949
2000023 Coop number 014734 08/01/1949 03/01/1950
2000023 Coop number 010272 03/01/1950 12/31/9999

Station Phenomenon Observing Protocol
Station
Key

Phenom
enon

Instru
ment

Obs
Time

Begin Date End Date

2000023 Temp MXMN 2400 01/01/0000 08/14/1998
2000023 Temp HYGR 2400 06/17/1998 12/31/9999

Resulting Composite View
Station
Key

Begin
Date

End Date Coop
ID

Name Inst. Obs
Time

2000023 06/01/1948 08/01/1949 010272 ANNISTON
MUNICIPAL
ARPT

MXMN 2400

2000023 08/01/1949 03/01/1950 014734 ANNISTON
MUNICIPAL
ARPT

MXMN 2400

2000023 03/01/1950 07/01/1967 010272 ANNISTON
MUNICIPAL
ARPT

MXMN 2400

2000023 07/01/1967 08/14/1995 010272 ANNISTON
FAA
AIRPORT

MXMN 2400

2000023 08/14/1995 06/17/1998 010272 ANNISTON
FAA AP

MXMN 2400

2000023 06/17/1998 12/31/9999 010272 ANNISTON
METRO AP

HYGR 2400

* Corresponding author address: Jeffrey D. Arnfield,
National Climatic Data Center, Active Archive Branch,
151 Patton Ave, Asheville, NC 28801;
e-mail: jeff.Arnfield@noaa.gov

When two tables are joined so that values may be
extracted from both, the database determines which
rows to combine by comparing values in one or more
columns in each table. Where the values match, data
from both rows are included in the query result. If one
does not carefully specify columns for comparison,
though, spurious matches may occur.

In the example in Figure 1, joining on only the
Station Key would produce a result set of 24 rows: all
three rows for the station in the Station ID table would
match all the four of station’s rows in the Station Name,
and each resulting row would match both of the station’s
rows in the Station Observing Protocol table. In order to
get the correct result set of six rows, one must include a
data comparison so that only contemporary records in
various tables are matched. But because the dates in
one table may not precisely match those in another, this
is a difficult proposition, involving correlated subqueries.

Although not illustrated in this example, matters are
further complicated if one table may contains no data at
all for a station during a period when another table does
have data. A structured query language (SQL)
technique, the outer join, is useful in resolving this
problem if only one table may be missing data, but not if
all three may be missing data. For the outer join to work,
one table would need to contain all the necessary
begin/end date pairs for the resulting view. As we’ve
already seen, though, none of the tables in the join can
be counted on for the master list of begin/end dates for
the final view.

2.2 Possible Solutions

Several solutions were considered and dismissed.
One possibility was to make an entry in all tables
whenever data for a station changed in any table. This
would result in a matching begin/end date pair in all
tables. This simplifies queries, but involves massive
data duplication and greatly complicates updates. It also
makes it more difficult to determine when a value has
changed, because a table may contain be many rows
for a station, all with different begin/end dates, but all
containing the same information about the station.
Because historical data comes from many sources,
attribution of data would become more complex as well.

A programmatic approach to combining data from
various tables is possible. However, this is
cumbersome, and presupposes significant programming
skill and tools on the part of the user. Even skilled
programmers are unlikely to be familiar with the
intricacies of a database schema containing more than
130 tables. More importantly, though, it fails to solve
the problem in an ad hoc SQL query environment.

2.3 The Approach Taken

What was needed was a table containing the date
pairs for each station for a given view. Such a table
would permit all other tables in the view to be outer
joined to it. However, creating and maintaining a table
for each view would be prohibitive. Instead, we
designed a subsystem to address the problem for all
tables in the database and all possible views of the

data. Figure 2 shows the Context Chronology
subsystem’s schema. This schema, along with
supporting programs, permits a user to define a view,
specify the tables from which data will be drawn, and
then automatically establish and maintain the begin/end
date pairs needed to produce the view, derived from the
included tables.

Figure 2

CTXT_TBL_FK2_CTXT

ROW_TP_FK2_CTXT_TBL

STN_CTXT_FK2_STN

STN_CTXT_FK2_CTXT

STN_CHRON_FK2_STN_CTXT
STATION CHRONOLOGY

STATION ID
CONTEXT ID
END DATE
BEGIN DATE

NUMBER(16)
NUMBER(16)
DATE
DATE

<pk,fk>
<pk,fk>

STATION

STATION ID
MODIFIED BY
MODIFIED DATE
ENTERED DATE
ENTERED BY
END DATE
BEGIN DATE

NUMBER(16)
VARCHAR2(100)
DATE
DATE
VARCHAR2(100)
DATE
DATE

<pk>

CHRONOLOGY CONTEXT

CONTEXT ID
CONTEXT NAME
OWNER
DATE CREATED
PRIVATE FLAG
SYSTEM FLAG

NUMBER(16)
VARCHAR2(100)
VARCHAR2(30)
DATE
NUMBER(1)
NUMBER(1)

<pk>

CONTEXT TABLE

CONTEXT ID
TABLE NAME

NUMBER(16)
VARCHAR2(30)

<pk,fk>

CONTEXT TABLE ROW TYPE

CONTEXT ID
TYPE COLUMN
TYPE VALUE

NUMBER(16)
VARCHAR2(30)
VARCHAR2(100)

<pk,fk>

STATION CHRONOLOGY CONTEXT

STATION ID
CONTEXT ID
BUILD DATE

NUMBER(16)
NUMBER(16)
DATE

<pk,fk1>
<pk,fk2>

A brief discussion of the tables and their roles is in

order:
• Station – this is the central table in the

database; all station-related tables have an
explicit foreign key relationship to it.

• Chronology Context – the table in which the
context, or view, is defined. It may be used by
the system, in which case the database
protects it from deletion.

• Context Table – this table lists the tables
contained in the context view. Our example
from Figure 1 would require 3 rows (Station
Name, Station ID, Station Phenomenon
Observing Protocol).

• Context Table Row Type – Referring to Figure
1, we note that the Station ID table has an ID
Type column. The table may contain many
different IDs for a station, but if we are only
interested in the Coop ID we don’t want date
pairs from other IDs for the station to be
included in our view. This table permits us to
define the column containing the “type”
descriptor, and the type descriptor value to
include in the view. If we also wanted to
include the FAA call sign in this report, we’d
have two “Row Type” rows for the Station ID
table.

• Station Chronology Context – An intermediate
table that links a station to a context. The build
date is used by stored procedures to determine
whether a context must be rebuilt for a given
station.

• Station Chronology – Finally, the dates! This
table contains the logical begin/end date pairs
extracted from the tables composing the view.
It is used to drive the query that extracts data

from the tables. Each table is outer joined to
this one, so that any available data is pulled
from all tables, but absence of data in any table
does not cause entire composite rows to be
omitted from the view.

Data that requires user intervention to remain
synchronized generally succumbs to entropy, becoming
inaccurate. In order to ensure data integrity and
currency the update process is handled automatically by
the database itself. Oracle has a database-level
construct called a trigger that causes a particular piece
of code to execute each time a specific event, such as
inserting, deleting or updating a row, occurs. Once a
context view is defined, Oracle triggers automatically
invoke the stored procedures necessary to maintain
these date management tables whenever rows in any
station-related tables in the database are inserted,
updated or deleted. This feature may be deferred in
order to speed data loading, then invoked once the load
is completed.

3. LOGGING CHANGES

The best-intended corrections sometimes overwrite
valid data. While mistakes must be corrected,
discarding original data values may be perilous. There
is no audit trail unless the previous value and
information source are retained when erroneous data
values are corrected. To be effective, changes must
always be logged regardless of how the change is
made, including by direct database update outside
control of the user interface.

FIGURE 3

A single Change Journal table is used to document
all value changes for all tables. This approach requires
a common key structure for all tables for ease of
management. A numeric column provides a unique,
alternate key for each table, and is populated using an
Oracle sequence number specific to that table. A
separate sequence for each table keeps key values,
and thereby space overhead, small.

In a system that experienced frequent updates to
values, the overhead in journaling each column’s
updates in a separate row might be prohibitive.
However, in this system rows are updated only to

correct errors, not to document changes in
configuration over time. Changes over time are noted
by inserting new rows, not by altering existing ones.

A simple SQL query will return the modification
update history for a column:

SELECT Old_Value, New_Value, New_Value_Source,
Modified_By, Modified_Date

FROM Change_Journal
WHERE TableName = <name of the table>

AND TableKeyVal = <key value for the row>
AND ColumnName = <name of the column>

ORDER BY Modified_Date
To ensure consistent journaling of changes, the log

table is automatically maintained by stored procedures
in the database rather than relying on the application
developer to properly implement the code.

An "on update" trigger is created for every logged
table in the database. This trigger passes certain critical
values to a stored procedure, which in turn writes them
to a single, common Change Journal table. The
process is illustrated in Figure 4.

FIGURE 4

If we permit a row in a station detail table to be

deleted and there are entries in the Change Journal
table for the row, a trigger on the station detail table
must handle deleting the change journal entries.

4. CONCLUSION

Both the date range handling and change
journaling, while seemingly complex, have greatly
simplified the development and increased both usability
and data integrity of the comprehensive station history
system. Performance is always a concern when
implementing triggered procedures in a database. In a
more transaction-intensive environment, either of these
techniques might require modification, or prove
unsuitable. However, the flexibility in querying station
history data, combined with the ability to audit changes
made by users, outweighs any performance penalties.

5. REFERENCES
Arnfield, J. D., 2000: A Flexible System To Manage And
Query NOAA Station History Information, American
Meteorological Society, 17th Conference on Interactive
Information Processing Systems, Albuquerque, NM, Jan
14-18, 2001; p468-47

CHANGE JOURNAL TABLE STRUCTURE
TableName – the name of the table in which the

change occurred
TableKeyValue – the numeric ID for the row in which

the change occurred
ColumnName – the name of column whose value

was changed
OldValue – the column’s original value
NewValue – the column’s new value
NewValueSource – Foreign key referencing the

source of the column’s new value
ModifiedBy -- ID of the user making the change
ModifiedDate – date/time stamp of when the change

was made.

