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1. INTRODUCTION

Until recently, grid-based photochemical modeling
systems have been used predominantly to simulate
historic high-ozone events (typically lasting a few days),
i.e. for hindcasting purposes. Recent developments in
computing technology have now made it possible to
apply these modeling systems for providing real-time air
quality forecasts (McHenry et al., 2000; Chang and
Cardelino, 2000). However, since real-time numerical air
quality modeling is still in its infancy, operational air
quality predictions by federal, state and local agencies
are based on a combination of weather predictions,
statistical analyses, and expert judgment (Ryan et al.,
2000; Dye et al., 2000), i.e. traditional techniques.
Cardelino et al. (2001) describe a forecasting program
for Atlanta, Georgia that incorporated both traditional
techniques and a photochemical model. Numerical
models can provide higher spatial and temporal
resolution than the traditional methods, but it is
necessary to evaluate the quality of these predictions
and estimate the modeling systems’ uncertainty before
photochemical models can be more widely used for real-
time air quality predictions.

In this paper, ozone predictions from a hindcast
simulation for the summer of 1995 generated by the
RAMS/UAM-V modeling system (Sistla et al., 2001a) are
first analyzed to establish a “best case” scenario for
model performance (in hindcast simulations,
meteorological observations are routinely assimilated
using 4DDA techniques). We compare the forecasting
skill of this modeling system to air quality forecasts
generated by the traditional methods (e.g., statistical
analyses, weather forecasts, expert judgment). We then
discuss the presence of inherent uncertainty associated
with the outputs of grid-based models, and present a
method to transform the deterministic model predictions
into a probabilistic form that takes into account known
sources of model uncertainty. The method is applied to
the summer 1995 hindcast simulation as well as a 2001
real-time air quality forecasting pilot project described in
a companion paper (Cai et al., 2002).

2. MODEL DESCRIPTION AND DATA BASE

For this study, ozone observations for the summer of
1995 were extracted from the United States

Environmental Protection Agency’s (EPA) Aerometric
Information Retrieval System (AIRS) database.
Preliminary ozone observations for the summer of 2001
were obtained from the EPA’s AIRNOW system for the
purpose of model evaluation (R. Wayland, EPA, personal
communication). As stated above, we utilize the three-
months hindcast model simulation carried out for the
time period June 4 – August 31, 1995 covering the
eastern United States to establish a best-case scenario
and assess model uncertainty.The photochemical model
used was the Urban Airshed Model - Variable Grid
Version (UAM-V) (Systems Applications International,
1995). The meteorological input for this simulation was
prepared using the Regional Atmospheric Modeling
System (RAMS3b) (Walko et al., 1995). Details on this
simulation have been described elsewhere (Sistla et al.,
2001a,b; Rao et al., 2000; Biswas et al., 2001; Biswas
and Rao, 2001; Hogrefe et al., 2000, 2001a,b). In
addition, we analyze ozone concentrations predicted by
a real-time numerical air quality forecasting pilot study
for the summer of 2001. In this project, meteorological
fields from both MM5 (Grell et al., 1994) and SKIRON
(Nickovic et al., 2001; http://forecast.uoa.gr/
charactnew.html) were used to drive the CAMx (Environ,
2000) photochemical model. In this study, we only
analyze predictions from the MM5/CAMx system. Details
on the model setup for this pilot study can be found in a
companion paper (Cai et al., 2002). For the analysis
presented here, model predictions are extracted for the
grid cells that contain observational sites.

3. METHOD OF ANALYSIS

In addition to statistical techniques commonly used
to evaluate hindcast simulations (such as mean
normalized bias error, mean normalized gross error,
systematic and unsystematic error), air quality forecasts
are often evaluated through so-called “Forecast
Verification Statistics” as defined in U.S. EPA (1999).
These statistics measure the forecasting skill in terms of
correctly/incorrectly predicting concentration levels
above/below a certain threshold and are presented in
Table 1.

We computed the value of these metrics for the
hindcast simulation in order to compare them to the
performance of current operational air quality forecasting
techniques reported in other studies.

To estimate the uncertainty of ozone predictions
from air quality models, we utilize the model evaluation
results presented in Hogrefe et al. (2001a,b). A spectral
decomposition technique was used in their studies, and
we apply the same technique to estimate the magnitude
of fluctuations on time scales that are not captured by
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the modeling systems. Further details on this technique
can be found in Hogrefe et al. (2001a,b).

4. RESULTS AND DISCUSSION

4.1 Comparison of Model Predictions to Current
Operational Air Quality Forecasts

In a past evaluation study for regression-type
forecasting (Dye et al., 2000) in California, values of 125
ppb for 1-hr ozone concentrations and 85 ppb for 8-hr
ozone concentrations were used as thresholds to
distinguish between events/non-events for the statistics
listed in Table 1. This study reported values of ~85-90%
for accuracy, 1.0-1.6 for bias, ~70% for the probability of
detection, and ~40% for the false alarm rate. Dye et al.
(2000) further reported that these values were
comparable to those for a similar ozone-forecasting
program established for the Mid-Atlantic Region (Ryan et
al., 2000). It should be noted that these statistics were
based on a comparison of a predicted county-wide daily
maximum concentration and the actual daily maximum
concentration observed anywhere within the county.

In an initial evaluation of the MM5/MAQSIP real-time
air quality forecasting project, McHenry et al. (2000)
reported a critical success index of ~30% for a threshold

of 70 ppb for 1-hr ozone concentrations. They did not
report values for the other statistics or for higher
thresholds.

Table 2 presents the forecast statistics for the 3-
months RAMS/UAM-V hindcast simulation. In this
analysis, observed and predicted daily maximum ozone
concentrations were paired in space, i.e. Observations
from roughly 500 monitoring locations in the
northeastern United States were compared to model
predictions at the corresponding grid cells. Therefore,
this analysis is somewhat more stringent than the one
reported in Dye et al. (2000) who performed the
evaluation on a county-wide basis. In addition to using
125/85 ppb for daily maximum 1hr/8hr average ozone
concentrations as thresholds distinguishing events/non-
events, the dependence of the forecast statistics on the
choice of the threshold is also examined. Additional
threshold levels of 65 ppb, 85 ppb, and 105 ppb were
also chosen for this purpose. For the Air Quality Index
(AQI), which is based on 8hr average ozone
concentrations, the thresholds separating “good” from
“moderate”, “moderate” from “unhealthy for sensitive
groups”, “unhealthy for sensitive groups” from
“unhealthy”, and “unhealthy” from “very unhealthy” are
65 ppb, 85 ppb, 105 ppb, and 125 ppb, respectively.
Table 2 illustrates that evaluation statistics depend

TABLE 1A.  Scheme used for defining the quantities “A” – “D” used in Table 1b.

TABLE 1B.  Forecast evaluation metrics as defined in EPA (1999).

Predictions

No Exceedance Exceedance

Observations
No Exceedance

A (Model correctly
predicted no exceedance)

B (Model predicted an
exceedance that did not
occur)

Exceedance
C (Model failed to predict
an exceedance that
occurred)

D (Model correctly
predicted an exceedance)

Accuracy (%) Percent of forecasts that were cor-
rect

100 * (A+D)/(A+B+C+D)

False Alarm Rate (FAR) (%) Percent of forecasted exceed-
ances that did not occur

100 * B/(B+D)

Probability of Detection (POD) (%) Percent of observed exceedances
that were forecasted correctly

100 * D/(C+D)

Critical Success Index (CSI) (%)
Measures how well high ozone
events are predicted (not influ-
enced by number of correct non-
exceedance forecasts)

100 * D/(B+C+D)

Bias Number of forecasted exceedances
/ Number of observed exceedances

(B+D)/(C+D)



critically on the threshold considered. For higher
thresholds, the accuracy of the (exceedance/no
exceedance) predictions increases, but the false alarm
rate also rises while the probability of detection and the
critical success index decrease. Compared to the
regression-type forecasting, the photochemical models
show a comparable or higher accuracy, a comparable
bias for lower thresholds but higher bias for higher
thresholds (“moderate” to “unhealthy for sensitive
groups” threshold), and a lower probability of detection
and higher false alarm rate.

In summary, it appears that operational air quality
forecasts outperform photochemical models in terms of
the metrics listed in Tables 1a and 1b. This is consistent
with the findings reported in Cardelino et al. (2001).
However, the evaluation of air quality forecasts should
not be limited to a small set of statistical measures. For
example, the potential ability of the photochemical
models to provide valuable information about the
temporal and spatial evolution of ozone plumes cannot
be quantified by such exceedance-based statistical
measures. On the other hand, it becomes clear that it is
essential to quantify the uncertainty in air quality
forecasting. In the following section, we suggest a
method to estimate the uncertainty associated with the
model predictions.

4.2. Quantifying the Uncertainty of Model
Predictions

Several recent studies investigated the uncertainty
of ozone predictions from photochemical modeling
systems. Using Monte Carlo simulations, Hanna et al.
(2000) found that ozone predictions have a typical
uncertainty of about 60 % due to the uncertainty in input
parameters to the photochemical model. Biswas and
Rao (2001) and Ku et al. (2001) found that different
treatment for meteorological modeling introduces an
uncertainty of 20-30% to the predictions of individual
daily maximum ozone concentrations. Hogrefe et al.
(2001a,b) have used time series analysis to evaluate
photochemical modeling systems. In their studies, they

introduced the concept of ‘inherent’ and ‘reducible’
uncertainty. The ‘inherent’ uncertainty was defined as
the inability of the grid-based models to capture the
observed fluctuations that are caused by processes
acting on scales that are not resolvable with the grid cell
size used in the model simulation. ‘Reducible’
uncertainty arises from imperfect scientific
understanding on how to best describe certain
atmospheric processes that can be resolved by the
models (e.g. cloud parameterization and prediction, the
uncertainty about the proper parameterization for the
PBL evolution in mesoscale models, inadequacies in the
model input data, etc.). It manifests itself in the model-to-
model and model-to-observation differences of ozone
concentrations predicted by state-of-science modeling
systems using different scientifically-credible process
formulations; model users are confronted with this
‘reducible’ uncertainty when applying a model to forecast
ambient air quality. While the ‘inherent’ uncertainty is the
theoretical lower bound for the model’s uncertainty even
for a ‘perfect’ model, the sum of ‘inherent’ and ‘reducible’
uncertainties is still a lower bound for the total modeling
uncertainty in practical applications (Hogrefe et al.,
2001a,b).

As discussed by Hogrefe et al. (2001), model
performance is poorest for high-frequency (intra-day)
fluctuations and for the day-to-day variations of the
diurnal amplitude. Thus, we treat the magnitude of these
two components (for a description on how to estimate
these components using time scale analysis, see
Hogrefe et al., 2001a,b) during the afternoon hours
(when the daily maximum ozone concentration occurs)
as an estimate for the lower bound of uncertainty in
predicting the daily maximum ozone concentrations with
current-generation models. The magnitude is measured
through the standard deviation (“sigma”) of the sum of
the observed intra-day and diurnal components during
afternoon hours (1200 - 1700 EST), reflecting the
model’s inability to capture the day-to-day fluctuations of
the magnitude of these components. Thus, we
calculated this magnitude (“sigma”) at each station for
the summer of 1995 (June – August), and then

TABLE 2: Performance statistics for the 1995 RAMS/UAM-V hindcast simulation for different threshold values
separating “exceedance” from “non-exceedance” for daily maximum 1-hr and 8-hr ozone concentrations. The first value
in each cell is calculated for daily maximum 1-hr concentrations, the second value is calculated for daily maximum 8-hr
concentrations.

Threshold value 45 ppb 65 ppb 85 ppb 105 ppb 125 ppb

Accuracy 85% / 80% 70% / 70% 80% / 85% 90% / 95% 98% / 99%

FAR 15% / 20% 35% / 50% 60% / 70% 80% / 85% 85% / 90%

POD 95% / 90% 80% / 70% 60% / 50% 45% / 40% 40% / 35%

CSI 80% / 75% 55% / 45% 35% / 20% 20% / 15% 15% / 5%

Bias 1.0 / 1.0 1.1 / 1.2 1.2 / 1.6 1.5 / 2.5 2.0 / >4



performed a spatial interpolation to determine the
percentage uncertainty in ozone concentration
contributed by these components at each model grid
cell. Figure 1 presents a map of this uncertainty in
predicting the daily maximum 8-hr concentration due to
the models’ inability to properly simulate the intra-day
and diurnal components. The map illustrates that the
uncertainty ranges from 15% to 30% in most areas;
higher values tend to occur in the urban areas, while
lower values tend to occur in the rural areas. This
percentage uncertainty can then be added/subtracted to
each model prediction to estimate the range of most
likely ozone concentrations. The same analysis can be
performed for time series of 1-hr average ozone
concentrations to estimate the uncertainty associated
with the prediction of daily maximum 1-hr ozone
concentrations. It should be noted that this approach
assumes that the model is unbiased, i.e. the uncertainty
is purely due to the model’s inability to simulate certain
fluctuations rather than a systematic over- or under
estimation. While past studies have shown that this is
certainly not the case (Sistla et al., 2001; Hanna et al.,
1996), once the presence and magnitude of such a bias
has been quantify, it would be easy to empirically adjust
for this bias for the purpose of ozone forecasting and,
thus, the bias would not be considered ‘uncertainty’ as

defined above.

4.3.  Probabilistic Forecasting

In this section, we illustrate how the presence of
uncertainty could be conveyed in the presentation of
ozone predictions based on numerical models. One way
of presenting probabilistic ozone forecasts would be to
predict a range of concentrations rather than a single
number. To this end, the estimated percentage
uncertainty can be added/subtracted to each model
prediction as described above.

Figure 2a illustrates how the total percentage of
observed daily maximum 8-hr ozone concentrations
which falls within the predicted range increases as the
amount of added/subtracted uncertainty increases. As
stated above, we measure the magnitude of the
uncertainty by the standard deviation (“sigma”) of the
sum of the observed intra-day and diurnal components
during afternoon hours (1200 - 1700 EST). As the
amount of uncertainty is increased from 1 sigma to 3
sigma, the percentage of daily maximum 8-hr ozone
concentrations that fall within the predicted range
increases from 50% to 92% for the 1995 RAMS/UAM-V
hindcast simulation. If the systematic bias of ozone
predictions at each station is removed prior to this

FIGURE 1: Percentage uncertainty of daily maximum 8-hr ozone predictions estimated from the observed intra-day and
diurnal components



analysis, the other curve in Figure 2a illustrates that for
any given level of added/subtracted “sigma”, a larger
percentage of daily maximum 8-hr ozone concentrations
fall within the predicted range. The results of applying
this analysis to the 2001 real-time MM5/CAMx ozone
forecast simulation are displayed in Figure 2b. It can be
seen that – both for the curves with and without bias
adjustment – the percentage of observations that fall
within the predicted range at any given level of “sigma” is
lower than for the RAMS/UAM-V hindcast simulation.
This confirms the hypothesis that the RAMS/UAM-V
hindcast simulation should be viewed as a “best case”
scenario, and that the performance of real-time forecast
simulations is not that good.

In addition, we examined the dependence of the
percentage of observations falling within the predicted
range as a function of both observed daily maximum
concentration and the amount of uncertainty added/
subtracted (as measured by “sigma”) to the predictions.
The results, presented in Figure 3, illustrate that the
percent of observations falling within the predicted range
for any given level of “sigma” is almost independent of
the observed daily maximum ozone concentration (the
bias was not removed in this calculation). In other words,
the method of providing a range of predicted ozone

concentrations will lead to similar results regardless of
the observed concentration except for very low ozone
concentrations.

Figure 4 demonstrates the application of this
method to the 2001 real-time ozone forecast project (Cai
et al., 2002). Time series of observed 1-hr daily
maximum concentrations and ranges of predicted
concentrations are shown for two monitoring stations in
New York State; the Loudonville monitor is at a suburban
location, while the Piseco Lake monitor is at a rural
location. For these plots, the predicted range was
calculated by adding/subtracting one “sigma” from each
prediction. Since “sigma” is calculated as percentage
uncertainty, the predicted ranges are larger for high
ozone concentrations. It can be seen that the general
pattern of ozone concentration was captured by the
model predictions, and that the observations frequently
fall within the predicted range. However, there are many
occasions on which the observations did not fall within
the predicted range, indicating – as illustrated above –
that adding one “sigma” is a too small an estimate for the
modeling uncertainty. The observation that the longer-
term fluctuations appear to be better captured by the
model compared to individual days’ predictions is in
agreement with the results of recent model evaluation

FIGURE 2A: Percentage of observed daily maximum 8-hr ozone concentrations falls within the RAMS/UAM-V predicted
range as a function of the amount of added/subtracted uncertainty as measured by “sigma” (described in the text).

FIGURE 2B: Percentage of observed daily maximum 8-hr ozone concentrations falls within the MM5/CAMx predicted
range as a function of the amount of added/subtracted uncertainty as measured by “sigma” (described in the text).



studies (Hogrefe et al., 2001a,b; Biswas et al., 2001).
In addition to presenting the ranges for the predicted

ozone concentration, we can also assume that – for an
unbiased model - the uncertainty of any given predicted
value is described by a normal distribution characterized
by a certain standard deviation. If we further assume that
this standard deviation is the observation-derived
quantity “sigma”, we can then calculate the probability
that a certain ozone concentration will be exceeded
based on model predictions. For this purpose, the
difference between the predicted concentration and the
threshold (say, 84 ppb for 8-hr ozone concentrations)
would be calculated at a given station and expressed in
terms of “sigma” at this location. If, for example the
predicted concentration was 80 ppb and “sigma” at this

station was 10%, the difference between predicted
concentration and threshold would be 0.5 “sigma”.
Assuming a normal distribution centered at the predicted
value, this would mean that there is a 31% chance of
exceeding the threshold. Using this method, spatial
maps of the probability that a certain threshold is
exceeded can be constructed.

5. SUMMARY

In this study, the forecasting performance of a
photochemical hindcast simulation was evaluated using
a set of threshold-based statistical metrics. When
comparing the performance of the traditional air quality
forecasts with numerical models, regression techniques,

FIGURE 3: Percentage of observed daily maximum 8-hr ozone concentrations falling within the RAMS/UAM-V predicted
range as a function of both the amount of added/subtracted uncertainty as measured by “sigma” (described in the text)
and a function of the observed daily maximum 8-hr ozone concentration.



weather prediction, and expert judgment seem to
outperform the numerical predictions. However,
photochemical models can provide useful temporal and
spatial information that is not available with the other
methods. To this end, it is essential that we quantify the
uncertainty associated with model predictions.
Therefore, we proposed a methodology that is based on
past model evaluation studies and estimated a lower
bound of uncertainty for model predictions at each grid
cell derived from spectrally decomposed observed
ozone time series.

The application of this method was illustrated using
both a 1995 hindcast simulation and a 2001 real-time
forecast simulation. As expected, the uncertainty in the
real-time forecast simulation was larger than that of the
hindcast simulation. Predicting a range of possible ozone
concentrations rather then a single number takes into
account the well-documented inability of photochemical
modeling systems to correctly predict the observation at
a single point in space and time while still providing
useful information about the temporal and spatial
patterns of ozone concentrations. The results of this
study illustrate that photochemical modeling systems
can be important tools for air quality forecasting.
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