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1. INTRODUCTION 
 
An important component of forecast error is error 
in the analysis of the initial state from which the 
forecast is made.  Analysis error can be reduced 
by taking more observations, by taking more 
accurate observations, by taking observations at  
locations chosen to better constrain the forecast, 
and by extracting more information from the 
observations that are available.  The last of 
these, obtaining the maximum amount of 
information from observations, is attractive 
because it makes existing observations more 
valuable and because, at least for linear systems, 
there is a solution to the problem of extracting the 
maximum information  from a given set of 
observations: under appropriate assumptions the 
problem of extracting the maximum amount of 
information from a set of observations of a linear 
system in order to minimize the uncertainty in the 
state estimate is solved by the Kalman filter (KF) 
(Kalman, 1960,Ghil and Malanotte-Rizzoli, 1991).    
 
Unfortunately, the Kalman filter requires 
statistical description of the forecast error in the 
form of the error covariance and obtaining the 
required error covariance involves integrating a 
system with dimension equal to the square of the 
dimension of the forecast system.  Direct 
integration of a system of such high dimension is 
not feasible. Attempts to circumvent this difficulty 
have involved various approximations to the error 
covariance  (Bishop et al, 1999; Tippett et al, 
2000) and approximate integration methods 
(Evensen, 1994; Dee, 1995; Fukumori and 
Malanotte-Rizzoli, 1995; Cohn and Todling, 1996; 
Verlaan and Heemink, 1997; Houtekamer and 
Mitchell, 1998). 
 
While the formal dimension of the forecast error 
system obtained by linearizing the forecast model 
about a base trajectory is the same as that of the 
forecast system itself, there are reasons to 
believe that the effective dimension is far lower. 
In the case of the tangent linear forecast error 
system the spectrum of optimal perturbations of 
the error propagator over the forecast interval 
typically comprise a few hundred growing 
structures and Lyapunov spectra for error growth 
have shown similar numbers of positive 

exponents suggesting that the effective 
dimension of the error system is O(103). 
 
The problem of reducing the order of a linear 
dynamical system can be cast mathematically as 
that of finding a finite dimensional representation 
of the dynamical system so that the  Eckart-
Schmidt-Mirsky (ESM) theorem can be applied to 
obtain an  approximate truncated system with 
quantifiable error. The ESM theorem states that 
the optimal k order truncation of an n dimensional 
matrix in the euclidean or Frobenius norm is the 
matrix formed by truncating the singular value 
decomposition of the matrix into its first k singular 
vectors and singular values.   A method for 
exploiting the ESM theorem to obtain a reduced 
order approximation to a dynamical system was 
developed in the context of controlling lumped 
parameter engineering systems and is called 
balanced truncation (Moore, 1981; Glover, 1984).  
Balanced truncation was applied to the set of 
ordinary differential equations approximating the 
partial differential equations governing 
perturbation growth in time independent 
atmospheric flows by Farrell and Ioannou 
(2001)(FI01). 
 
In this work a reduced order Kalman filter is 
derived based on balanced truncation and 
applied to a time dependent Lyapunov unstable 
quasi-geostrophic model of a forecast tangent 
linear error system.  We first review the method 
of balanced truncation and then use it to 
construct the reduced order Kalman filter  
 
 
2.  REDUCTION BY BALANCED TRUNCATION 
 
The error dynamics are assumed to be governed 
by the linear system: 

ψψ A
dt

d
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where ψ  is the error state vector and  is the 
matrix dynamical operator which may be time 
dependent, but will for the time being be 
assumed to be time independent.  Because of 
the high dimension of the error system in forecast 
applications we are interested in exploring the 
accuracy of reduced order approximations to this 
system. 
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Before proceeding with the method of balanced 
order reduction we must first choose the norm 
that will be used to measure the accuracy of the 
approximation. The accuracy is measured by the 
norm of the euclidean length of the errors 
incurred in a chosen variable. This norm is the 
square root of the Euclidean inner product in this 
variable.  If another norm is selected to measure 
the accuracy of the approximation then the most 
direct method of accounting for this choice is to 
transform the variable used to represent the state 
of the system so that the Euclidean inner product 
in the transformed variable corresponds to the 
new norm.  The reduced order approximate 
system resulting from balanced truncation will in 
general depend on the norm. As discussed in 
FI01, optimal order reduction for stable normal 
systems is immediate: it is a Galerkin model 
based on projection of the dynamics onto the 
least damped modes. Difficulties in the reduction 
process arise in cases for which the system is 
non-normal in the variable corresponding to the 
chosen norm. Then a model based on projection 
on the least damped modes is sub optimal and 
the reduction must proceed by including in the 
retained subspace the distinct subspaces of the 
preferred excitations and preferred responses of 
the system. 
 
The preferred structures of response of a non-
normal system are revealed by stochastically 
forcing the system with spatially and temporally 
uncorrelated unitary forcing and calculating the 
eigenfunctions of the resulting mean covariance 

matrix += ψψP  (the brackets denote an 

ensemble average, and + the hermitian 
transpose of a vector or a matrix). The 
covariance matrix under such forcing is given by: 
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and this integral is readily calculated by solving 
the Lyapunov equation (FI96): 

IPAAP −=+ +  
which P  satisfies, as can be easily verified. The 
hermitian and positive definite matrix P  
characterizes the response of the system and its 
orthogonal eigenvectors, ordered in decreasing 
magnitude of their eigenvalue, are the empirical 
orthogonal functions (EOF's) of the system under 
spatially and temporally uncorrelated forcing. 
 
The preferred structures of excitation of the 
system are determined from the stochastic 
optimal matrix: 
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the orthogonal eigenvectors of which, in 
decreasing magnitude of their eigenvalue,  order 
the forcing structures according to their 
effectiveness in producing the statistically 
maintained variance. The eigenvectors of  are 
called the stochastic optimals (SO's) and 
because of the non-normality of the system are 
distinct from the EOF's. The stochastic optimal 
matrix satisfies the back Lyapunov equation: 

Q

Q
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The Lyapunov equations for P  and Q  have 

unique positive definite solutions if  is stable.  
The covariance matrix 

A
P  and stochastic optimal 

matrix  need to be determined in order to 
proceed  with order reduction  by  balanced 
truncation. 

Q

 
A successful order reduction must accurately 
approximate the dynamics of the system which 
can be expressed as the mapping of all past 
(square integrable)  forcings  to all future 
responses of the system. This linear mapping of 
inputs to outputs is called the Hankel operator.  
Application of the ESM theorem to the Hankel 
operator provides the optimal low order 
truncation of the dynamics.   Remarkably, 
because of the separation between past forcings 
and future responses in the Hankel operator 
representation of the dynamics this operator has 
finite rank equal to the order of the system;  its 
singular values, denoted by h, are the square 
root  of the eigenvalues of  the product of the 
covariance and stochastic optimal matrix  P  and  

.  Q
The balanced truncation transforms the internal 
coordinates of the system so that the transformed 
covariance matrix P  and stochastic optimal 
matrix  become identical and diagonal (while 
preserving the inner product of the physical 
variables).  The dynamical system is then 
truncated in these transformed balanced 
coordinates.  The balanced truncation retains a 
leading subset of empirical orthogonal functions 
(EOF's) and stochastic optimals (SO) of the 
dynamical system and preserves the norm. 

Q

Balanced truncation preserves the stability of the 
full system and provides an approximation with 
known error bounds which is found in practice to 
be nearly optimal (Moore, 1981; Glover, 1984; 
FI01) 
 
3.  THE REDUCED ORDER KALMAN FILTER 
 
In the previous section we showed how to reduce 
the order of an autonomous linear system by 
obtaining an accurate balanced truncation of the 
time independent operator . Consider now a A



time dependent operator of the form 
, and assume that the mean 

operator  is dominant.  In previous work we 
showed that perturbation growth in time 
dependent non-normal systems occurs primarily 
in the non-normal subspace of the time mean 
operator (Farrell and Ioannou, 1999).  In the 
following we take advantage of this result to 
obtain an approximate reduced order model of a 
time dependent system by reducing the order of 
the time dependent operator using the balancing 
transformation derived for the mean operator.  
This procedure is found to produce an accurate 
model order reduction for example non-
autonomous stationary systems at far less 
computational cost than is incurred by balancing 
at each time. In the following the error covariance 
matrix and the  Kalman  gain are obtained using 
this reduced model and transformed back to the 
full space for use in updating the state estimate. 
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Let the dimension of the full system perturbation 
vector, , be N, and of the reduced system, 

, be k with k < N. The variables in the 

reduced system, , are related to the variables 
in the full system, , by the transformation  

ψ+= Y . 

The evolution equation in the kψ coordinates is  

ψ)(tAk=  

where 
XtAY )(+= . 

In this approximation the biorthogonal bases 
 and  remain the balancing transformation 

of the mean operator  instead of being 
recalculated at each step.  
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In the reduced order system variables the 
observation matrix is HXH k =

+Yti
k )(

, so that the 
error covariance matrix in the reduced order 
system , is evolved 
according to the reduced order dynamics: 
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where  is the model error covariance 
projected on the reduced order space, 
i.e. Q , and kM  is the reduced 
order propagator. The reduced order covariance 
matrix is corrected by the observation statistics:  
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in which the reduced order Kalman gain is  
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where += YRYR k . 
 
The Kalman gain that  will be used in the full 
system in order to entrain the observations is 
obtained from the reduced order system gain:  

kr XKK =   
with the superscript indicating that the Kalman 
gain is obtained from the reduced order system. 
 
A model of a time dependent tangent linear 
system with dimension 400 is formed by varying 
the zonal flow in an Eady channel model 
according to Fig. 1.  This model is Lyapunov 
unstable and the performance of state estimation 
methods is compared in the four panels of Fig. 2 
where we show the true state (top panel), and the 
estimates of the state based on the full Kalman, 
the order 40 reduced order Kalman and the 
estimate of the state by direct substitution, all at 
time 150=t . Both the Kalman filter based on 
integrating the full error covariance matrix and 
the order 40 reduced order Kalman filter give a 
good estimate of the true state, while direct 
substitution fails.  
 

 
Figure 1:  Realization of the time dependent 
velocity. The mean is a constant shear wind, and 
the fluctuations have r.m.s amplitude 0 . 3.
 
 
4. CONCLUSIONS 
 
Optimal utilization of observing resources 
requires that the structure of the time dependent 
error is taken into account in identifying the state. 
The error covariance matrix contains the required 
information but the high dimension of the forecast 
system precludes directly obtaining it. In this work 
we described a method for obtaining an 
approximate error covariance and an 
approximate state identification using a Kalman 
filter based on balanced truncation of the tangent 
linear forecast error system. 
 



Comparison of the performance of a full Kalman 
filter and approximate filters obtained by 
balanced truncation on the order 400 storm track 
model reveals that truncation at order 40 is 
sufficient to provide accurate flow dependent 
covariances  for the purpose of approximating 
the Kalman gain. 
 

Figure 2: First panel: streamfunction of the state 
at . The state is growing with Lyapunov 
exponent 

150=t
075.0=λ . Second panel: 

streamfunction of the analyzed state obtained 
using a full Kalman filter. Third panel: 
streamfunction of the analyzed state obtained 
using a Kalman filter calculated from a balanced 
truncation of the full system to 40 degrees of 
freedom. Fourth panel: streamfunction obtained 
by direct substitution. Observations are made at 
one location , . 4=x =z 8.0
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