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1. INTRODUCTION

An important component of forecast error is error
in the analysis of the initial state from which the
forecast is made. Analysis error can be reduced
by taking more observations, by taking more
accurate observations, by taking observations at

locations chosen to better constrain the forecast,
and by extracting more information from the
observations that are available. The last of
these, obtaining the maximum amount of
information from observations, is attractive
because it makes existing observations more
valuable and because, at least for linear systems,
there is a solution to the problem of extracting the
maximum information  from a given set of
observations: under appropriate assumptions the
problem of extracting the maximum amount of
information from a set of observations of a linear

system in order to minimize the uncertainty in the
state estimate is solved by the Kalman filter (KF)

(Kalman, 1960,Ghil and Malanotte-Rizzoli, 1991).

Unfortunately, the Kalman filter requires
statistical description of the forecast error in the
form of the error covariance and obtaining the
required error covariance involves integrating a
system with dimension equal to the square of the
dimension of the forecast system. Direct
integration of a system of such high dimension is
not feasible. Attempts to circumvent this difficulty
have involved various approximations to the error
covariance (Bishop et al, 1999; Tippett et al,
2000) and approximate integration methods
(Evensen, 1994; Dee, 1995; Fukumori and
Malanotte-Rizzoli, 1995; Cohn and Todling, 1996;
Verlaan and Heemink, 1997; Houtekamer and
Mitchell, 1998).

While the formal dimension of the forecast error
system obtained by linearizing the forecast model
about a base trajectory is the same as that of the
forecast system itself, there are reasons to
believe that the effective dimension is far lower.

In the case of the tangent linear forecast error
system the spectrum of optimal perturbations of
the error propagator over the forecast interval
typically comprise a few hundred growing
structures and Lyapunov spectra for error growth
have shown similar numbers of positive

exponents suggesting that the effective
dimension of the error system is O(103).

The problem of reducing the order of a linear
dynamical system can be cast mathematically as
that of finding a finite dimensional representation
of the dynamical system so that the Eckart-
Schmidt-Mirsky (ESM) theorem can be applied to
obtain an approximate truncated system with
quantifiable error. The ESM theorem states that
the optimal k order truncation of an n dimensional
matrix in the euclidean or Frobenius norm is the
matrix formed by truncating the singular value
decomposition of the matrix into its first k singular
vectors and singular values. A method for
exploiting the ESM theorem to obtain a reduced
order approximation to a dynamical system was
developed in the context of controlling lumped
parameter engineering systems and is called
balanced truncation (Moore, 1981; Glover, 1984).
Balanced truncation was applied to the set of
ordinary differential equations approximating the
partial differential equations governing
perturbation growth in time independent
atmospheric flows by Farrell and loannou
(2001)(F101).

In this work a reduced order Kalman filter is
derived based on balanced truncation and
applied to a time dependent Lyapunov unstable
quasi-geostrophic model of a forecast tangent
linear error system. We first review the method
of balanced truncation and then use it to
construct the reduced order Kalman filter

2. REDUCTION BY BALANCED TRUNCATION

The error dynamics are assumed to be governed
by the linear system:

d
dt
where I/ is the error state vector and A is the

matrix dynamical operator which may be time
dependent, but will for the time being be
assumed to be time independent. Because of
the high dimension of the error system in forecast
applications we are interested in exploring the
accuracy of reduced order approximations to this
system.



Before proceeding with the method of balanced
order reduction we must first choose the norm
that will be used to measure the accuracy of the
approximation. The accuracy is measured by the
norm of the euclidean length of the errors
incurred in a chosen variable. This norm is the
square root of the Euclidean inner product in this
variable. If another norm is selected to measure
the accuracy of the approximation then the most
direct method of accounting for this choice is to
transform the variable used to represent the state
of the system so that the Euclidean inner product
in the transformed variable corresponds to the
new norm. The reduced order approximate
system resulting from balanced truncation will in
general depend on the norm. As discussed in
Fl01, optimal order reduction for stable normal
systems is immediate: it is a Galerkin model
based on projection of the dynamics onto the
least damped modes. Difficulties in the reduction
process arise in cases for which the system is
non-normal in the variable corresponding to the
chosen norm. Then a model based on projection
on the least damped modes is sub optimal and
the reduction must proceed by including in the
retained subspace the distinct subspaces of the
preferred excitations and preferred responses of
the system.

The preferred structures of response of a non-
normal system are revealed by stochastically
forcing the system with spatially and temporally
uncorrelated unitary forcing and calculating the
eigenfunctions of the resulting mean covariance

matrix P=<lyl//+> (the brackets denote an

ensemble average, and + the hermitian
transpose of a vector or a matrix). The
covariance matrix under such forcing is given by:

P= je”"e“dt
0

and this integral is readily calculated by solving
the Lyapunov equation (FI96):

AP+ PA" =-1
which P satisfies, as can be easily verified. The

hermitian and positive definite matrix P
characterizes the response of the system and its
orthogonal eigenvectors, ordered in decreasing
magnitude of their eigenvalue, are the empirical
orthogonal functions (EOF's) of the system under
spatially and temporally uncorrelated forcing.

The preferred structures of excitation of the
system are determined from the stochastic
optimal matrix:

+

Q:J'eAzeAtdt
0

the orthogonal eigenvectors of which, in
decreasing magnitude of their eigenvalue, order
the forcing structures according to their
effectiveness in producing the statistically

maintained variance. The eigenvectors of QO are

called the stochastic optimals (SO's) and
because of the non-normality of the system are
distinct from the EOF's. The stochastic optimal

matrix Q satisfies the back Lyapunov equation:
ATO+04=-1
The Lyapunov equations for P and Q have

unique positive definite solutions if 4 is stable.
The covariance matrix P and stochastic optimal
matrix 0 need to be determined in order to

proceed with order reduction by balanced
truncation.

A successful order reduction must accurately
approximate the dynamics of the system which
can be expressed as the mapping of all past
(square integrable) forcings to all future
responses of the system. This linear mapping of
inputs to outputs is called the Hankel operator.
Application of the ESM theorem to the Hankel
operator provides the optimal low order
truncation of the dynamics. Remarkably,
because of the separation between past forcings
and future responses in the Hankel operator
representation of the dynamics this operator has
finite rank equal to the order of the system; its
singular values, denoted by h, are the square
root of the eigenvalues of the product of the

covariance and stochastic optimal matrix P and

The balanced truncation transforms the internal
coordinates of the system so that the transformed

covariance matrix P and stochastic optimal
matrix () become identical and diagonal (while

preserving the inner product of the physical
variables). The dynamical system is then
truncated in these transformed balanced
coordinates. The balanced truncation retains a
leading subset of empirical orthogonal functions
(EOF's) and stochastic optimals (SO) of the
dynamical system and preserves the norm.
Balanced truncation preserves the stability of the
full system and provides an approximation with
known error bounds which is found in practice to
be nearly optimal (Moore, 1981; Glover, 1984;
FI101)

3. THE REDUCED ORDER KALMAN FILTER

In the previous section we showed how to reduce
the order of an autonomous linear system by
obtaining an accurate balanced truncation of the

time independent operator A . Consider now a



time dependent operator of the form
A(t) = A, + A,(t), and assume that the mean

operator A0 is dominant. In previous work we

showed that perturbation growth in time
dependent non-normal systems occurs primarily
in the non-normal subspace of the time mean
operator (Farrell and loannou, 1999). In the
following we take advantage of this result to
obtain an approximate reduced order model of a
time dependent system by reducing the order of
the time dependent operator using the balancing
transformation derived for the mean operator.
This procedure is found to produce an accurate
model order reduction for example non-
autonomous stationary systems at far less
computational cost than is incurred by balancing
at each time. In the following the error covariance
matrix and the Kalman gain are obtained using
this reduced model and transformed back to the
full space for use in updating the state estimate.

Let the dimension of the full system perturbation
vector, ¥/, be N, and of the reduced system,

V,, be k with k < N. The variables in the

reduced system, ¥/, , are related to the variables
in the full system, i/, by the transformation

+
vy =Y"y.
The evolution equation in the ¥/, coordinates is
dy,
=4,y
da "

where

A (=Y ADX .
In this approximation the biorthogonal bases
Y and X remain the balancing transformation
of the mean operator AO instead of being
recalculated at each step.

In the reduced order system variables the

observation matrix is H* = HX , so that the
error covariance matrix in the reduced order

system P*(t,) = YP"(t,)Y" s evolved
according to the reduced order dynamics:

PY(1,,) = M* (t,)P* (¢ )M (z,) + O"

where Qk is the model error covariance
projected on the reduced order space,
ie. 0" =YOY" and M" is the reduced

order propagator. The reduced order covariance
matrix is corrected by the observation statistics:

P (t,)=P"(t,,)-K"(@t. ) HPY (1.,)

in which the reduced order Kalman gain is

-1
Kk(tiH) = Pk/(tm )HkT(HkPkf (ti+] )HkT + Rk)
where R¥ = YRY ™.

The Kalman gain that will be used in the full

system in order to entrain the observations is

obtained from the reduced order system gain:
K" = XK*

with the superscript indicating that the Kalman

gain is obtained from the reduced order system.

A model of a time dependent tangent linear
system with dimension 400 is formed by varying
the zonal flow in an Eady channel model
according to Fig. 1. This model is Lyapunov
unstable and the performance of state estimation
methods is compared in the four panels of Fig. 2
where we show the true state (top panel), and the
estimates of the state based on the full Kalman,
the order 40 reduced order Kalman and the
estimate of the state by direct substitution, all at

time ¢ =150. Both the Kalman filter based on
integrating the full error covariance matrix and
the order 40 reduced order Kalman filter give a
good estimate of the true state, while direct
substitution fails.

Figure 1: Realization of the time dependent
velocity. The mean is a constant shear wind, and

the fluctuations have r.m.s amplitude 0.3 .

4. CONCLUSIONS

Optimal utilization of observing resources
requires that the structure of the time dependent
error is taken into account in identifying the state.
The error covariance matrix contains the required
information but the high dimension of the forecast
system precludes directly obtaining it. In this work
we described a method for obtaining an
approximate  error covariance and an
approximate state identification using a Kalman
filter based on balanced truncation of the tangent
linear forecast error system.



Comparison of the performance of a full Kalman
filer and approximate filters obtained by
balanced truncation on the order 400 storm track
model reveals that truncation at order 40 is
sufficient to provide accurate flow dependent
covariances for the purpose of approximating

the Kalman gain.
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Figure 2: First panel: streamfunction of the state
at t =150 . The state is growing with Lyapunov

exponent A =0.075. Second panel:
streamfunction of the analyzed state obtained
using a full Kalman filter. Third panel:
streamfunction of the analyzed state obtained
using a Kalman filter calculated from a balanced
truncation of the full system to 40 degrees of
freedom. Fourth panel: streamfunction obtained
by direct substitution. Observations are made at

one location x =4, z=0.8.
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