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1 INTRODUCTION

The Kalman filter provides the optimal resolution
to the problem of sequential data-assimilation under
the hypothesis that the true system variables evolve
according to linear dynamics subject to additive nor-
mal noises, and that the observed variables are lin-
early related to the true system variable subject to
additive normal noises.

Two main limitations that restrict the performance
of the Kalman filter are therefore: 1) the nonlin-
earity of the real system dynamics; 2) the non-
normality (non-Gaussianity) of the noises. The first
item has been addressed partly by the so-called “ex-
tended” Kalman filters that performs local lineariza-
tions. This study focuses on the second item. Perfor-
mance of the standard Kalman filtering is restricted
especially when the noise distributions have heavy
tails corresponding to extreme bursts of the system
variables and observations. We present a new the-
oretical framework for the optimal sequential data
assimilation, the Kalman-Lévy(KL) filter, when the
noises are distributed according to the power or Lévy
laws.

2 FUNDAMENTAL PROPERTIES OF
POWER- AND LEVY-LAW NOISES

2.1 One-dimensional noise distribution

For one-dimensional system, a power-law probability
density function can be expressed as:
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as |w| = xoo. A family of power and Lévy laws is
characterized by two parameters, the exponent y and
the scale factor C.

The exponent p controls the decay rate of the prob-
ability, i.e., the smaller it is, the wilder can be the
noise. For p < 2 (resp. p < 1), the variance (resp.
mean) is not defined mathematically. Therefore, sig-
nificant light may be shed onto the data-assimilation
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systems using the power- or Lévy-law for the noise
distributions, instead of the Gaussian law. The scale
factor C' controls the global amplitude of the power
law tail, i.e., the larger it is, the more frequent the
extreme bursts can be. Together, C# defines the
characteristic scale of the self-similar fluctuations of
w. For a given u, the uncertainty of w is uniquely
determined by C.
We call such w the “u-variable.” It has useful prop-
erties (Sornette 2001), including:
(a) if w is a p-variable with the scale factor C, then
so is pw with the scale factor |p|*C for a real p;
(b) if w; and w; are two independent p-variables
with the scale factors C; and Cj, then w =
w; +wj is also a p-variable with the scale factor
C=0Ci+Cj.

2.2 Optimal estimation

We consider the estimation of an true state variable
zt using two samples z! and z°; the superscripts
{-}t:0 correspond to true, forecast and observation
of the data assimilation system, respectively. The
two samples are contaminated by independent noises
w!® that are both p-variables with the scale factor
Ct°, respectively. The estimate Z of z' is sought as
a linear, unbiased combination of 2° and 2! with the
corresponding weights (1 — K°) and K°:
i=(1—-K°2f + K°z° . (2)
Using the properties of the p-variables mentioned
above, the scale factor of the residual error in % is:

3)

The optimal choice of the weight K° is defined so as
to minimize the uncertainty of Z, i.e., to minimize C,
ie., B;IQ{OCA’ = 0 subject to %CA’ > 0. For p > 1,
the solution for the optimal K° exists:

C = (1-K°)Ct + (K°)C° .
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is the ratio of the characteristic error size of 2f-°. The
resulting optimal scale factor is

A .
(1 + A%)IH

For p = 2, this procedure is identical to the optimal
estimation for a system where w!+® are distributed ac-
cording to the Gaussian law with the variances C*°.
For p < 1, the noises are so wild that there is no gain
in combining the two samples 2f*°. The one with the
smaller scale factor must be chosen for such a case.

C = (6)

2.3 N-dimensional p-variable

For N-dimensional u-vector €, we rewrite it as a lin-
ear sum of NV independent p-variables:

e =Guw

(7)

where w is the vector representation of N indepen-
dent p-variables and G € RV *¥ represents the lin-
ear relation between € and w. Then, € is character-
ized by two parameters, the exponent u and the “tail
covariance matrix”:

B = glzlcgTls! | (8)

where C € RV*V is a diagonal matrix associated
with the individual scale factors of w. The operator
{-}/%] means that each element of matrix or vector is
defined by

9)

This definition of B is consistent with the proper-
ties of p-variables mentioned above. Like the scale
factor C' for w in the one-dimensional case, the tail
covariance matrix B represents the uncertainty of w.
We measure the global uncertainty of N-dimensional
p-variable by the “average” scale factor, i.e., traceB.
The larger traceB is, the more uncertain is w. For
p = 2, the tail-covariance matrix B is identical to
the error covariance matrix.

GE’?] = sign(Gy) |Gy|” -

3 THE KALMAN-LEVY FILTER

3.1 Problem

We are now in a position to formulate a sequential
data-assimilation framework for a system with the
noises distributed according to the power or Lévy
law. We present here the framework for a state vector
x € IRY whose true dynamics is given by a set of
linear stochastic difference equations:

Xp =My po1xy  +m5 (10)

where My, ;_1 € RY*¥ is the linear dynamical map
and n%_, is the N-dimensional p-vector dynamical
noise with the tail covariance B}_,. It is straight-
forward to extend the framework for a system whose
dynamics is given by a set of linear stochastic differ-
ential equations.

The index k corresponds to the time sequence
when the observations y§ € IR™* are taken. The ob-
servations y{ are assumed to be linear functions of
the true state vector x}, subject to an additive noise:

(11)

where Hy € R**Y ig the linear observation func-
tion which can vary at each time step k and €}, is the
p-vector observational noise with the tail covariance
B¢.

k

yz = Hkxz: +6(k): )

3.2 Optimal sequential data-assimilation

system

STEP 1. DYNAMIC FORECAST: Given a set of initial
conditions described by the subscript {-}r—1 which
are known, the forecast is performed deterministi-
cally to advance from &k — 1 to k based on (10):

Xl;c = Mk,k—lxz_1 . (12)

The corresponding tail-covariance of the forecasts at
time k is:
5]
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B =

where the definition (8,9) is used for B%_;.

STEP 2. PROBABILISTIC ANALYSIS: Given the fore-
cast x§ with Bf from Step 1 along with the obser-
vations y}, with tail-covariance Bj, the analysis x3
is:

Xy = xl;c + Kﬁ (y% — Hkxi) (14)
with the tail-covariance:
“
B: = (Gf-K/H,G)'®
T
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where the definition (8,9) is used for Bf and Bg.

The optimal filter KE is determined so as to min-
imize the average uncertainty of x%, i.e., traceB%}.
Therefore, each element of K} is obtained by solving
for

0
——strace By = 0, (16)
OKE



with the condition that Hessian traceB%, must
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be positive definite. It can be shown mathematically
that (16) results in N sets of L, nonlinear equations
for L unknowns. Each set corresponds to minimiza-

tion of Bz |,'z'2
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fori =1,...,N and j = 1,..., L. It can be also
shown mathematically that such Kﬁ uniquely exists
for 4 > 1. For p = 2, the KL filter is identical to
the standard Kalman filter for the Gaussian noise
distributions.

4 NUMERICAL EXPERIMENTS

We demonstrate the performance of the KL filter
using a simple one-dimensional case where the dy-
namics and observations are stationary. We use
i = 1.2 for the heavy-tail distribution of the wild
noises, (M,B") = (0.9,1) for the dynamics, and
(H,B) = (1,1) for the observations. A realiza-
tion of the true variable z} is shown in Figure la
for £ =1,...,10000 by a solid line. The occurrence
of a few large peaks are caused by rare but extreme
noise fluctuations due to the Lévy noise distribution.
Based on z}, a realization of y§ (circles) is show in
Figure 1b for k = 1050, ...,1100 .

We first perform an identical twin experiment us-
ing the KL filter. Figure 1b shows the forecasts xfc
(square) and analyses 2 (diamonds), using y§. Next
we perform the standard Kalman filtering using the
same y; assuming that both dynamical and observa-
tional noises are distributed by the Gaussian laws.
For this experiment, we use (B")?/* for dynamical
error variance P" and (B€)%/* for observational er-
ror variance P¢ so that the Kalman filtering is the
optimal within its definition. The result of the stan-
dard Kalman filtering is shown in Figure 1c. It ap-
pears clear by visual inspection that the optimal KL
analysis z* is much closer to ' than the non-optimal
Kalman filter’s £%, more often than not. The statisti-
cal analysis using the cumulative error distributions
of the numerical experiments verifies that the perfor-
mance of the KL filter in fact exceeds significantly
that of the standard Kalman filter.

5 CONCLUSION

We have introduced the new concept of a “tail covari-
ance” that generalizes the usual notion of the covari-
ance for the noises distributed according to power
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Figure 1: Numerical experiment for one-dimensional
case for (M,B") = (0.9,1) for the dynamics, and
(H,B¢) = (1,1) for observation with y = 1.2; a) evo-
lution of true state variable z!, for k = 1,...,5000.
Panel b) and c) corresponds to the use of the op-
timal KL filtering and the standard Kalman filter,
respectively, for k£ = 1050, ..., 1100.

and Lévy laws. Within the context, we have pre-
sented the exact solution of the optimal sequential
data-assimilation problem. The data assimilation
system is optimized so as to maximize the certainty
by controlling the (heavy) tails of the error distri-
bution. The full solution, called the Kalman-Lévy
(KL) filter, is obtained as the solution of the nonlin-
ear equations. We have investigated the performance
of the KL filter in detail for a one-dimensional case
and have shown by direct numerical experiments that
the improvement is significant, all the more so, the
heavier the tail, i.e. the smaller the power law expo-
nent p.
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