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1. INTRODUCTION

In the measurement of Earth radiation budget
by satellite radiometers, fields of broken clouds
present a special problem. In order to compute the
radiant flux from a measured radiance, it is neces-
sary to know the bidirectional reflectance distribu-
tion function (BRDF), which describes the
anisotropy of the radiation from the scene. The ran-
domness of the clouds in terms of size, shape,
optical depth and spacing causes them to have
varying distributions of directional reflectance.
Many of the problems of attempting to treat broken
cloud fields arise from the three-dimensional char-
acteristics of the clouds. McKee and Cox (1976,
1979) showed that 3-dimensional effects of cloud
shapes on radiative transfer create far greater vari-
ability than do differences of cloud microphysical
parameters. Because of the importance of 3-
dimensional cloud effects in remote measure-
ments, 3-D radiative transfer have become an
active area of research, as can be seen from the
site: http://climate.gsfc.nasa.gov/I3RC

Because the BRDF is a random variable, flux
computed from the measured radiance is in error
due to the difference of the model BRDF from the
true but unknown BRDF for each realization. One
aspect of the computation of the BRDF of a broken
cloud field is the field of view of the radiometer.

This paper discusses the measurement of radi-
ation over a partly cloudy or broken cloud field. A
number of simulations have been made of the
measurement process with cloud fields described
by high resolution satellite imagery. The purpose of
this paper is not to present another simulation but
to examine the parameters of the problem so as to
gain an understanding of their roles in the mea-
surement process. First the nature of the measure-
ment is considered, then an empirical description
of cloud fields is reviewed which leads to a probabi-
listic model of cloud fields. The measurements are
then expressed in terms of this model.
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2. MEASUREMENT

The measurement of a radiometer may be
expressed as

m = £ L(x ¥ 6, @)P(a, B)dQ
FOV

where L denotes radiances from the Earth-atmo-
sphere system at point X,y and the view zenith
angle 6 and relative azimuth ¢ from the Sun define
the direction of the ray of reflected sunlight from the
point to the instrument. The response of the instru-
ment to radiance at a given point in the field of view
is not constant but is defined by the point spread
function of instrument P(a,B), which is, described in
instrument coordinates as angles along-scan a

and cross-scan 3 as measured from the optical axis.

The integration is over the field of view FOV of the
instrument.

The field of view of the instrument is projected
onto the Earth-atmosphere system as distance x
alongtrack and distance y crosstrack so that the
measurement is written as

m = z! L(x v 6, @)P(a, B)Jdxdy
FOV

where Jis the Jacobean of the transformation from
instrument to Earth coordinates and the integration
is now over the projection of the field of view onto
the Earth-atmosphere system, often called the
footprint of the measurement. The projection of the
instrument coordinates a,3 onto the Earth-atmo-
sphere system X,y varies as the instrument scans;
the size of the projection of the FOV onto the Earth-
atmosphere system increases with view zenith
angle 6.Typically the characteristic size of the field
of view is 10 to 60 km at nadir. The angles da and
dp at the instrument project onto the Earth-atmo-
sphere as distances dxand dy as
dx = pcsdBda , dy = pdB,

where P is the slant distance from the spacecraft to
the scene and can be computed from the altitude

of the spacecraft, the view zenith angle 6 and the
radius of the Earth. The Jacobean is then

J = 1/(pzcsce)



Jis a function of the view zenith angle, but may be
taken to be constant over the field of view, i.e. for a
single pixel.

The shortwave radiance L is related to the
albedo of a point by

L(x, .8, ¢) = T0'R(x ¥ 8, W)a(x y)H cosq
where a(X, y) is the albedo of the point,
R(X, Y, 6, U) is the bidirectional reflectivity of the

point X,y in direction 0, Y , H is the solar flux at the
“top of the atmosphere” and  is the solar zenith
angle.

We will assume that the scene is partial clouds
over a dark surface, e.g. ocean away from the Sun-
glint direction, so that radiance from the surface
through the cloud can be neglected. These effects
can be added later. It is assumed further that the
clouds are in one layer, so that they do not overlap.
Under these approximations the measurement can
be expressed in terms of the contributions of indi-
vidual clouds as

-1
m = 1 "HJcosC x
> J; R(x %8, y)a(x y)P(a, B)dxdy
T FOV

For a broken cloud field, the clouds will assumed to
be small relative to the instrument FOV. With this
approximation the measurement becomes

|

where A is the area of cloud i, g; is its albedo, R, is
its BDRF and P; is the value of the point spread

function at the cloud center. The BDRF and the
albedo are considered here to apply to a cloud as
an entity, as by McKee and Cox (1979), rather than
as a quantity distributed over the area of the cloud.
This concept is suitable for a viewpoint far from the
cloud. The case of clouds which are large com-
pared to the FOV must be treated using the inte-
gral. Because the parameters Rj, A;, & and the

location of the cloud within the field of view are ran-
dom variables, the measurement is likewise a ran-
dom variable.

In the analysis of data, the scene is usually
assumed to be uniform and the pixel level and the
albedo is computed by use of a scene dependent
R, model which accounts for the anisotropy of the

radiance field. Because R, is a random variable

which manifests itself in a summation, the relation
of the average albedo within the pixel is a random

number rather than the model value, resulting in an
error in the retrieved albedo value.

The point spread function PSF may have a "tail"
which decreases exponentially and thus extends a
large distance (e.g. Smith, 1994). A judicious
choice of the limit of the FOV is made, e.g. aline is
defined beyond which the point spread function is
below a threshold value, so that the FOV is limited.
Then the FOV has an area A and the set of clouds
in the field of view is finite. The FOV is symmetric
about the X-axis and its 2 sides are given by

y = £f(x)
The area of the FOV can be computed from this
expression.

3. CLOUD DISTRIBUTION OBSERVATIONS

The description of the cloud sizes and spacing
and their relation to the field of view of the radiome-
ter is an exercise in stochastic geometry. This
aspect will be simplified immensely by considering
them to be circular in the horizontal plane and
characterized by a diameter.

Plank (1969) investigated the size distributions
of fair weather cumulus clouds using photographs
taken from aircraft. He found that for representative
Florida cumulus clouds, the cloud base diameters
are between d = 50 to 200 ft. (80 to 320 m) and D,

= 3.0 miles (5 km), and their size is distributed
exponentially:

n = Kexp(-yD), 9<D<Dn

where y is between 2 to 22 miles™ (1.2to 13 km'l)
and K is in km™2. The minimum cloud size is related
to the break in the spectrum at small sizes noted by
Cahalan et al. (1994). The total number of clouds is
then given by integrating this expression over the
range d to Dy

N - %(e_yd_e_me)

The total sky cover is given by integrating the num-
ber of clouds times their size, giving

_ TKX
2y3
where
D (yD )2
_V m
x Ol-e [1+me+T’“}



For a given y and cloud fraction, K can be com-
puted and then the total number of clouds N. The

average cloud area is then A = S/ N.
4. PROBABILISTIC MODEL

The cloud distribution is considered to be a
Poisson process, so that N is the mean number per
unit area. The mean number of clouds in the FOVis
AN and probability that there are n clouds in any
given FOV is

_ -AN(AN)"
n=- € o
Given that a cloud is present, the cumulative prob-
ability distribution of diameter D is

1— e—v(D —d)
1-e V(D —d)

The point spread function P varies across the
FOV so that it is necessary to specify the location
of each cloud within the FOV. The location of the
clouds will be assumed to be random over the
domain and independent for each cloud. The prob-
ability distribution for X is then

P(D) =

2f(x)
X) = —==
p(x) = =,
and Yy is uniformly distributed between

[-f(X), f(X)] .

It is useful to consider the case of the point
spread function being constant over the FOV, in
which case the measurement is independent of the
position of clouds within the FOV. If the BDRF and
albedo for each cloud is the same, the mean mea-
surement reduces to

-1
M= m "HIPRa$ cosq
The second moment of the measurement is given
by

2 -1 2 2
0= (Tt "HIPR3 AT
2 A

The number of clouds in the footprint is indepen-
dent of the size of the clouds, so that

EEA?D = N A’ and the mean square cloud
|

area is given by
0= y>{e " [24- 24yD)
2 3 44 Dpn
—12(yD)“-4(yD) ~(yD) " } |,

The variance of the measurements can be com-

puted as Orzn = [’ [h(? and the dispersion
(squared) is
2 _ 2
oo/ = NOAY'S. -1
This result is based on the assumption of a PSF
which is constant over the field of view. A realistic
PSF is peaked near its center. The effect of this

peak will be to weight the clouds near this peak
heavily and others less, so that the variance will not

decrease as N'll2 as in the case of a constant
PSF, but more slowly. For a PSF which is not con-
stant, one would have to evaluate the second
moment of measurement using the PSF.

These variations are due only to the amount of
cloudiness is a given field of view and are not due
to variations of the bidirectional reflectance func-
tion R or albedo a of cloud. A simple model of this
effect is now presented.

The albedo of the cloud will increase with its
diameter D because less light leaves the sides in a
downward direction. Also, as D increases, the
height and thus optical depth increases, which
increase albedo. The radiance from the Sun-lit side
of a cloud is quite high, while the radiance from the
shady side is low. As D increases, these effects of
the edges decrease relative to the total radiance in
a given direction from the cloud. Thus Rand a are
functions of D. The mean measurement then
becomes

0= T "HIPNCOSC x

[ "R(6, $;D)a(Z D) A(D) p(D)dD

The second order moments can be also computed
in like manner.

This equation shows that the relations of BRDF
and albedo to cloud size and the distribution of
cloud sizes determine the distribution of measure-
ments. The R and a are not simply functions of
diameter D but also of a number of other random
variables. This can be taken into account by writing
the probability density function as being dependent
on these other variables in addition. One would
then integrate over these added variables as well

.In the model discussed here, the number of
clouds, their size distribution and locations are
assumed to be independent. For large cloud frac-
tions, these approximations will break down as the
clouds would overlap.



5. CONCLUDING REMARKS

A simple model is presented for the random
nature measurement of radiances from broken
cloud fields. This model is based on observations
and demonstrates that the basic variables of the
problem are the instrument field of view and point
spread function, the distribution of clouds and the
dependence of the radiances on the cloud sizes.
The basic cloud distribution parameters are the
cloud fraction, the range of cloud sizes and the
rate of decrease of number with size. The relations
developed here provide a framework for
parametric studies e.g. of the effect of field of view
size on retrieved fluxes for cloud fields.
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