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1 INTRODUCTION

A key question in the understanding of local insta-
bilities that lead to the breakdown in forecasts, is
the complexity of their dynamics (behavior). In this
paper, we demonstrate that, in spite of the atmo-
sphere’s high dimensionality, in a suitable sense the
local finite-time atmospheric dynamics is often low
dimensional, and we conjecture that these low dimen-
sional regions have a strong relationship to dynamical
instabilities.

Section 2 introduces the method of breeding (Toth
and Kalnay 1993; Toth and Kalnay 1997) to produce
an ensemble of forecasts from different initial con-
ditions (see Ehrendorfer (1997) and Kalnay (2002)
and references within for a review of different meth-
ods to generate the initial conditions). Section 3 de-
scribes the two types of bred vector ensembles that
we utilize. One type, obtained from NCEP has also
been previously discussed by Patil et al. (2001). The
second ensemble type uses many more bred vectors
from a replica of the NCEP model. A main aim of
this work is to compare results from these two en-
sembles. In Section 4 we introduce a statistic, which
we call the Bred Vector dimension (BV-dimension),
which effectively determines the dimension of the sub-
space spanned by members of the ensemble over a ge-
ographically localized region. Using our statistic we
investigate the Earth’s atmospheric dynamics for the
Northern Hemispheric winter. A combination of op-
erational data and a larger membership ensemble run
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are used to assess the robustness and saturation of the
BV-dimension. We conclude with a discussion about
the potential implications of our finding for weather
forecasting and data assimilation.

2 BREEDING

The procedure for breeding can be outlined in the fol-
lowing steps: (a) add a perturbation to the base state
(usually the atmospheric analysis) at a given time to;
(b) integrate both the base state and the perturbed
state forward in time for a period of t; — to (for this
paper t1 — to = 24 hours); (c¢) at time, ¢, subtract
the base state from the perturbed state and rescale
the difference, so that it has the same norm (for the
NWS ensemble system, rotational kinetic energy is
used) as the initial perturbation; (d) this rescaled
difference is then used as a new perturbation to the
base state and the process (a)-(c) are sequentially re-
peated. The process is illustrated in Figure 1. The
iterated difference between the perturbation and the
main solution is called the bred vector.

3 DATA

For the analyses presented in this paper, we used two
different types of ensembles.

Ensemble type 1: This ensemble consists of 5
perturbed forecasts (see Toth and Kalnay (1993)
and Toth and Kalnay (1997) for operational imple-
mentations). The ensemble forecasts are made avail-
able on the Internet every 24 hours by the NWS and
give the forecasts at 12 hour intervals spanning 8
days. In this study we focus on the wind vector field



Bred Vector

= . ‘

£ Analysis / / /

£ Ve Ve

E - =7 -~

5 - — i -

vl I _— = &,Perturbed Forecast

® . - r——

Day n Day n+l1 Day n+2 me

Figure 1: Schematic of the breeding cycle for ensemble forecasts

at 250mb, 500mb, and 850mb during the period of
February 10, 2000 to March 31, 2000 and from De-
cember 1, 2000 to March 31, 2001. Thus our data
will emphasize the northern hemispheric winter.

Ensemble type 2: In addition to the operational
data, larger membership ensembles were also created
using a replica NCEP Ensemble Forecasting system.
Fach of these ensembles consisted of 15 pairs of en-
semble members and were run for the period of Jan-
uary 15, 2000 to February 20, 2000.

4 THE BRED VECTOR DIMENSION

In this section we outline how the bred vectors can be
analyzed to obtain a useful measure of the dimension-
ality of the space in which instabilities in the forecasts
are likely to grow the fastest. We begin with consid-
ering regions at a fixed pressure level of 5 by 5 grid
points (about 1100 km squared) by choosing a grid
point as the center of the region as well as an ar-
ray of 24 neighbors so that the array best covers the
1100 km square (at high latitudes some points are
skipped in longitude to keep an approximate uniform
distance). Given N fields at each point (e.g., tem-
perature, wind speeds, etc.), the values at these 25
points, for each bred vector, are ordered to form a
25N dimensional column vector which we call a local
bred vector.

The issue we want to address is the linear indepen-
dence of the k local bred vectors. That is, we want to
determine the effective dimensionality of the subspace
spanned by the local bred vectors. To do this we use
empirical orthogonal functions (EOF) [also known as
principal component analysis] (Scheick 1997). The
underlying concept is to find the lowest dimensional
subspace that, in a least squares sense, optimally rep-
resents the majority of the data.

The k local bred vectors form the columns of a
25N x k matrix, B. The k x k covariance matrix

of B is C = BT B, where BT is the transpose of B.
Since the covariance matrix is nonnegative definite
and symmetric, its k eigenvalues \; are nonnegative
(A; > 0), and its eigenvectors, after multiplying by B
and normalizing, form an orthonormal set of vectors
v; which span the column space of B. We order the
eigenvalues by Ay > Ay > ... > Ag. The singular
values of B are o; = y/);. The eigenvalues )\; are
a measure of the extent to which the & column vec-
tors making up B point in the direction v;, and each
0? = )\; is said to represent the amount of variance in
the set of the k unit vectors that is accounted for by
v;. By identifying how many of the vectors of v; rep-
resent most of the variance of B, we can identify an
effective dimension spanned by the & local bred vec-
tors. For example if two out of five singular values
are zero, then the subspace spanned by the k local
bred vectors is three dimensional. However, if some
of the singular values are nonzero but small, the issue
becomes more difficult. One option is to use thresh-
olding (as is often done when trying to isolate the
dominant modes in EOF), but there is difficulty in
determining the “best” value of the threshold. In-
stead we opt to define the following statistic on the
singular values which we call the Bred Vector dimen-
sion (BV-dimension):
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As examples of the statistic, we describe several cases
with k = 5 vectors of unit length. If the k local bred
vectors comprising B were all the same, then the sin-
gular values would be v/5,0,0,0,0. This would yield
a statistic of 1(1/5,0,0,0,0) = 1. If the k local bred
vectors were equally distributed between two orthog-
onal unit vectors v; and ws, in the sense that each

one accounts for half the variance, then the singular
values would be 1/5/2,/5/2,0,0,0, and our statistic

would yield ¥(1/5/2,+/5/2,0,0,0) = 2. If the local

Y(o1,02,...,0,) = (1)



bred vectors again lie in the two dimensional subspace
spanned by unit vectors v; and vs, but the two are not
equally represented, then this could give 2 > ¢ > 1.
For example, if 4 of 5 unit local bred vectors were
pointing in the same direction while the other pointed
in an orthogonal direction, then the singular values
would be 2,1,0,0,0 and 4(2,1,0,0,0) = 1.8. While
the dimension of the space spanned by the local bred
vectors is 2, our statistic gives an intermediate value
reflecting the degree of dominance of one direction
over the other. In general our statistic returns a real
value between 1 and k. Note that while small pertur-
bations due to noise or numerical error will typically
cause the dimensionality of the space spanned by the
k local bred vectors to be k, the effective dimension
may be substantially lower and is insensitive to small
changes in the o; due to noise or numerical error.

5 REGIONS OF LOW BV-DIMENSION

5.1 ENSEMBLE TYPE 1

We now consider the two horizontal (zonal and merid-
ional) wind vector components (N = 2) of the (k = 5)
bred vectors from the NWS ensemble system. An ex-
ample is shown in Figure 2. The BV-dimension was
calculated at each spatial point on the grid and con-
tours are shown for values less than three. A large re-
gion of relatively low dimensionality (BV-dimension
less than 3) is evident over western North America.
This indicates that in this region, the local bred vec-
tors effectively span a space of substantially lower
dimension than that of the full space.

The regions of low BV-dimension can be shown
to be statistically significant and not due to random
fluctuations, by applying the BV-dimension to sur-
rogate data (Theiler et al. 1992) that consists of
bred vectors chosen from different days which are sub-
stantially far apart (removing temporal correlations).
When this is done no regions with low BV-dimension
are observed (Patil et al. 2001).

On average, we find that more than 20% of the
Earth’s surface is covered by regions of low BV-
dimension (i.e., less than three). Table 1 lists the
percentage of the Earth’s surface that is covered on
average by different BV-dimensions. On individual
days we find that regions of low BV-dimension cover
as much as 46.74% at 250mb, 30.76% at 500mb, and

Table 1: Average Percentage of Surface Cov-
ered by BV-dimensions

| Local Dimension || 250mb | 500mb | 850mb |

1-2 1.14% | 0.69% | 0.69%
2-3 29.77% | 22.20% | 23.67%
3-4 60.79% | 63.74% | 63.37%
4-5 7% | 12.77% | 11.68%

32.06% at 850mb. The maximum percentage of area
covered on any given day by the lowest values of the
BV-dimension (less than two) are 6.40% at 250mb,
4.72% at 500mb, and 4.23% at 850mb. These large
regions of low BV-dimension develop and persist on
the order of less than a week and move eastward at
about one third of the wind speed at 500mb. Fig-
ure 2 depicts the development of a region of low BV-
dimension over North America from a forecast ini-
tiated on March 5, 2000. Note that the regions of
low BV-dimension depend on the background flow as
demonstrated by the good agreement between the re-
gions of low BV-dimension at different forecast times
(Figure 2 top panels) and the corresponding analysis
times (Figure 2 bottom panels).

5.2 ENSEMBLE TYPE 2

It is important to understand the behavior of the BV-
dimension as the number of members in the ensemble
is substantially increased. For this we use ensem-
ble integrations consisting of 15 members. Figure 3
shows the maximum and minimum BV-dimension at
500 mb over the entire globe as the number of mem-
bers in the ensemble is increased. There does not
appear to be any saturation of the maximum BV-
dimension. However, the minimum BYV-dimension
grows very slowly from approximately BV-dimension
2 with 5 bred vectors to BV dimension 3 when 15
bred vectors are used. The lack of saturation of the
maximum BV-dimension is consistent with the bred
vectors pointing in random directions when there is
no growth of errors (e.g., members of the ensemble
show good agreement and the bred vectors are simply
random perturbations of the background flow). On
the other hand, the very slow growth of the minimum
BV-dimension gives an indication of the robustness of
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Figure 2: Development and propagation of a region of BV-dimension less than 3 at 500 mb. The upper panel

series depicts the development of a region of BV

dimension less than 3 from a forecast initiated on March 5,

dimension less than 3 analysis cycle corresponding to the

2000. The lower panel series shows regions of BV

forecast times in the upper panels.
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Figure 3: Maximum and minimum BV-dimension for
the globe at 500 mb as a function of the number of
members in the ensemble. Each curve represents a
different 48 hour forecast.

lower values of BV-dimension. Further evidence of for
the spatial robustness of regions of low BV-dimension
(less than 3.5) can be seen in Figure 4; which shows
regions of low BV-dimension as the number of mem-
bers in the ensemble are increased.

6 CONCLUSION

The main result of this paper is a means of identifying
local low dimensional behavior (the BV-dimension)
in the atmosphere. We have provided evidence that
these low dimensional, dynamical instabilities (re-
gions of low BV-dimension) cover a significant por-
tion of the globe, that they are intrinsic to the dy-
namics of the atmospheric system, that they typically
last for several days, and that they are robust when
the number of members of the ensemble is increased.

The analysis presented in this paper was conducted
using the wind fields. We have conducted simi-
lar analysis using other fields such as temperature,
geopotential height, and relative vorticity. These dif-
ferent fields all yield consistent results for the BV-
dimension. This indicates that the local low dimen-
sional behavior is robust to the choice of the atmo-
spheric field as well as to the size of the membership
of the ensembles.
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Figure 4: Contours of BV-dimension less than 3.5
at 500 mb computed with ensembles of five, ten and
fifteen members for February 22, 2000 at 00Z.



At any given time %o, there is inevitably a dis-
crepancy A(tg) between the true atmospheric state
and its representation in the computer model (anal-
ysis). Now consider a later time ¢; > 9, and sup-
pose that in a region of interest there is a low BV-
dimension at time ¢;. This suggests (ignoring model
error here) that any local discrepancy A(#;) between
the true state and its representation in the computer
model (forecast error) lies predominantly in the “un-
stable subspace”, the space spanned by the few vec-
tors that contribute most strongly to the the low
BV-dimension. We conjecture that in many cases
this information can yield a substantial improvement
in forecasting. In particular, the implication is that
the data assimilation algorithm should correct the
computer model state by moving it closer to the ob-
servations along the direction of the unstable sub-
space since that is where the true state most likely
lies (Kalnay and Toth 1994). Current data assimila-
tion techniques (e.g., that used by the NWS) do not
take this into account.

Our results indicate that the BV-dimension iden-
tifies instabilities that have grown due to some dom-
inant local dynamical stretching. If this is true, then
BV-dimension would indicate regions in which in-
creased observations may lead to the greatest im-
provement in reducing errors in the forecast (prelim-
inary results for a quasi-geostrophic model are dis-
cussed in Corazza et al. (2001)). Since these re-
gions are quite large, a targeted approach may be
suitable (see Bishop and Toth (1999), Bishop et al.
(2001), Szunyogh et al. (2001) and references within)
in which it may be possible to find the location
where (in both space and time) observations are most
needed to reduce the forecast errors.
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