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1. INTRODUCTION

Good probability distributions of future outcomes
are an important tool in risk management. The ideal
forecast product for an end-user is not a probabilis-
tic weather forecast but a probabilistic forecast of a
weather dependent economic quantity (e.g. soft drink
sales, electricity demand, wind energy production).
Such end-to-end forecasts attempt to translate current
uncertainty in weather variables to future uncertainty
in variables relevant to the end user. Combined with
the user’s utility function, such forecasts enable ratio-
nal decsion making.

Ensemble forecasts provide a starting point for
generating probabilistic forecasts for risk management
[Toth and Kalnay 1997; Palmer 2000]. In this paper,
we present two different approaches to convert ensem-
ble forecasts into probabilistic forecasts, and we illus-
trate these approaches using economic examples. The
dependence of economic quantities of interest on the
weather is generally nonlinear. This means that the ex-
pected value of the economic quantity is not the value
associated with the expected weather. Under such cir-
cumstances, a crude probabilistic forecast can be sub-
stantially more valuable than a highly accurate predic-
tion of the mean of the forecast distribution.

2. INTERPRETING ENSEMBLES

Ensemble forecasts do not sample the true distribu-
tion of uncertainty in the forecast. The initial conditions
of the ensemble do not lie on the attractor of the model,
let alone the system of which the model is an imper-
fect representation [Smith et al. 1999]. The ensemble
does contain quantitative information about the fore-
cast uncertainty. The optimum method for extracting
this information depends on the type of forecast, and
also on the application.
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2.1 Conditioning Climatology

Our method assumes that the forecast variables
generated by a forecast model contain information
about, but are not equivalent to actual weather vari-
ables. This is obvious if the forecast variable is not
a weather variable (e.g. electricity demand), but is
also true for weather variables such as temperature,
due to the finite resolution and other imperfections of
the model. Model output statistics (MOS) [Glahn and
Lowry 1972] can be used as inputs into models that pre-
dict the forecast variables. These models can use the
entire ensemble, or ensemble statistics, as conditioning
variables and they can output information about the dis-
tribution of the forecast variable, not just its expected
value.

2.2 “Dressing” the Ensemble

Dynamical ensembles can be convolved with sta-
tistical ensembles, constructed using the error statis-
tics of the “best member” of the ensembles [Roulston
and Smith 2001c]. This approach is most straightfor-
ward when the errors of the forecast quantity are quasi-
normal. This condition may arise with temperature but
it is not true for quantities such as precipitation. Single,
“best guess” forecasts can also be dressed with statis-
tical ensembles based on their historical error statistics.

3. DECISION MAKING AND RISK MANAGEMENT

The central idea of decision making theory is utility
[Lindley 1985]. The utility is a quantification of the de-
sirability of a particular outcome, relative to alternative
outcomes. Let U(e,c) be the user’s utility, where e is
the set of possible events, and c is the set of choices
open to the user. If p. is the forecast probability of a
particular event, then the optimum choice, ¢*, is that
which maximizes the user’s expected utility, given by

BlU(e,0)] = Y peUe,0) (1)
In general, U is a nonlinear function of e so

E[U(e, )] # U(Ele], ¢) 2)

To calculate E[U(e,c)] for a given value of ¢ requires



knowledge of p.. In business decision making, the utility
is an increasing function of profit. The risk tolerance of
the decision maker can be incorporated into the utility
by making utility a nonlinear function of profit. The
utility of a risk averse user will be a concave function of
profit, such a function has diminishing marginal utility
(see Fig. 1).
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Figure 1: The utility as a function of profit of two
different users. The dashed line is for a risk neutral
user and the solid line is for a risk averse user.

4. EXAMPLES
4.1 Wind Energy Production

To investigate the possible value of probabilistic
forecasts to wind energy producers, a “toy” electricity
market was used. In this market, the producer must
promise an amount of energy, E., in advance for a
given price, P.. If the actual production, E,, equals
or exceeds the contracted amount then no penalty is
incurred. If, however, the actual production falls short
of the contracted production, the producer must pur-
chase the shortfall on the spot market at a price, Ps.
The income of the producer, I, is given by

7= E.. P, when FE, > E.
| EB.-P.—(E.—E,)-Ps when E,<E,
(3)

The nonlinearity of I as a function of E, means that to
make the optimum choice of E. requires a probabilis-
tic forecast, p(E,); the expected at value of E, is not
sufficient. In practice, Ps, will also be unknown at the
time of writing a contract and so a joint distribution,
p(Ea, Ps), is actually required. If P, is independent of
E, then E. should be set at the 100 x P./(P;) per-
centile of the probability distribution of E,. This shows
that, in this context, having a probabilistic forecast of
E, is absolutely essential for rational decision making.

Windspeed data sampled at 1 minute intervals at
the CLRC Rutherford Appleton Laboratory's Energy Re-
search Unit was used to construct a synthetic time series
of power production from a wind turbine. A climato-
logical model of production, conditioned on the time
of year, was constructed and compared with five other
methods for generating power production forecasts:-
(a) A persistence forecast for which the last 48 half
hourly productions are interpreted as a sample of the
forecast distribution.

(b) Production associated with the ECMWF high reso-
lution forecast, interpreted as a deterministic forecast.
(c) Productions associated with ECMWF ensemble of
forecast treated as a sample of the true distribution.
(d) Climatology of power production conditioned on the
high resolution forecast by using the half-hourly produc-
tion levels in the 10 historical days which had forecasts
closest to the current forecast.

(e) Climatology conditioned on the ensemble forecast,
as in (d) but where “closeness” was defined by the Eu-
clidean distance in the 3D space defined by the 10th,
50th and 90th percentiles of the windspeed ensemble
forecast.
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Figure 2: Weekly profits of generators using the dif-
ferent forecast generation strategies. (a) persistence,
(b) ECMWEF high resolution forecast, (c) ECMWF en-
semble prediction scheme, (d) climatology conditioned
on the high resolution forecast, (e) climatology condi-
tioned on the ensemble. (a)-(e) are all relative to a cli-
matological forecast (=100). (f) shows the climatology
conditioned on the ensemble relative to the climatology
conditioned on the high resolution forecast. The error
bars were obtained by bootstrap resampling.



The value of the spot price was taken to be the
U.K. system marginal price. A log-normal model for
this price, conditioned on the time of day and year was
used. For each half hour, a joint probability forecast for
E, and P, was generated. The value of E. which max-
imized the expected value of I was then chosen and the
actual value of I calculated using the power production
timeseries generated from the windspeed observations.
The period Jan. 1999 to Aug. 1999 was used as the his-
torical reference period, and the period Sept. 1999 to
Aug. 2000 was used to simulate the performance of the
producer. For the experiments, E. = 10 GBP/MWh
was used. Figure 2 compares the weekly profits of
the producer relative to climatology as a function of
lead time. The best performance is obtained when the
ECMWF ensembles are used to condition the climatol-
ogy. This result illustrates that even a relatively crude
method for constructing probabilistic forecasts can be
more valuable than a refined forecast of the mean of
the forecast distribution. Figure 3 compares the daily
income of a producer basing their choice of E, on cli-
matology, and one using the 4-day ECMWF ensemble
to condition the climatology. It can be seen that the in-
crease in income is due to both avoiding overpromising
during periods of unusually low wind (e.g. Jan. 2000),
and also to exploiting periods of unusually high wind
(peaks in Fig. 3b).
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Figure 3: A comparison of daily net income of a gen-
erator basing decisions on the climatological forecasts
and a generator using a climatological forecast condi-
tioned on the 4-day ECMWF ensemble forecast.

A more detailed examination of the wind energy
forecast experiments can be found in Roulston et al.
[2001a,2001b].

4.2 Electricity Demand

Electricity demand is temperature dependent. This
dependence, for the U.K., is shown in Fig. 4. In warmer
climates, the demand curve rises again at high temper-
atures due to air conditioning load.

A similar toy market model was used to investi-
gate the potential value of probabilistic forecasting to
an electricity supplier. In the model, the supplier must
decide in advance how much electricity, G, to contract
from generators. This electricity costs P. per unit. If
the demand is D, the supplier can sell electricity onto
consumers at a price of P per unit. However, should
demand exceed contracted generation the supplier must
pay an imbalance cost of P; on the generation shortfall.
The income of the electricity supplier is thus given by

I— —-P.G+ PsD when D <G
o —-P.G+P,D—-P(D—-G) when D>G
(4)

The performance of an electricity supplier using dif-
ferent forecasting approaches was simulated. In all the
simulations the supplier was contracting generation 4
days ahead of delivery. The cost price was P. = 1.0
and the selling price was Ps = 1.5. The supplier’s prof-
its were calculated for a wide range of imbalance set-
tlement prices, reflecting the observed volatility of elec-
tricity prices. The forecasting approaches used were:-
(a) Choosing G to maximize I averaged over demands
drawn from a climatological distribution.

(b) Choosing G to match the demand associated with
the temperature in the high resolution ECMWF fore-
cast.

(c) Choosing G to maximize I averaged over the de-
mands associated with each of the 51 members of the
ECMWF ensemble.

(d) Dressing the ECMWEF high resolution forecast with
a statistical ensemble of historical errors (in the de-
mand) and then choosing G to maximize I averaged
over this ensemble.

(e) Dressing each of the 51 members of the ECMWF
dynamical ensemble with a statistical ensemble of de-
mand errors, and choosing G to maximize the average
I.

The results of the simulations are shown in Fig. 5.
Treating the single high resolution forecast as a deter-
ministic forecast and contracting the generation appro-
priate for this single forecast is a very bad strategy. This
is not because the high resolution forecast lacks skill, it
has a high correlation with the observed temperature,
but because this forecast is for the expected demand
and given the nonlinearity of Eq. 4 the expected de-
mand is not the optimal value of G to maximize the
expected income. The bare ensemble provides better
results because this forecast contains some information



about the probability distribution. Creating a statistical
ensemble by adding historical errors to the high resolu-
tion forecast yields an even better result, and creating
the statistical ensemble around the dynamical ensem-
ble provides further improvement, particularly at high
P; /P, ratios when Eq. 4 is strongly nonlinear.
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Figure 4: Weekday peak electricity demand in the
U.K. as a function of temperature.
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Figure 5: Simulated profit of an electricity supplier in
Washington D.C. The supplier contracts generations 4
days in advance and a comparision of different forecast
methods is shown. The profit is plotted as a function
of the imbalance price to the cost price (P;/P.).

The large increase in performance when historical
errors are added to the forecasts (high resolution and
ensemble) is partly because these were historical errors
in demand, incorporating not just uncertainty in the
temperature forecast, but also in the demand forecast.

A more detailed description of the electricity de-
mand forecasting experiments, including results for
other locations, can be found in Smith et al. [2001].

5. SUMMARY

The nonlinear nature of many users’ utility func-
tions make probabilistic forecasts essential for ratio-
nal decision making. The construction of probabilis-
tic weather forecasts requires the interpretation of the
dynamical ensembles produced by operational forecast
centres such as ECMWF and NCEP. Two different ap-
proaches to interpreting ensembles have been discussed
in this paper. Each has been illustrated using an eco-
nomic example example. From the examples it can be
appreciated how important probabilistic forecasts are,
when dealing with nonlinear utility functions, for a wide
range of applications.
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