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1. INTRODUCTION* 
 As power generation costs increase and 
market competition intensifies, precise demand 
forecasting information is becoming more valuable 
(Gellings, 1996; Jameson, 1999). While weather 
variability is a major contributor to variability in 
utility peak loads, commonly available 
meteorological data are not necessarily well-suited 
to use in load forecasting. Weather forecast data 
used as input for load forecasting are often 
regional in nature and not resolved at the scale of 
the city (or the utility’s specific customer service 
area). Furthermore, variables available for model 
input (such as peak temperatures) while fairly 
highly correlated with load, may not be as useful 
as derived parameters such as heating and 
cooling degree-days. When degree-day variables 
are used they are often based on coarse spatial 
(and even coarse temporal) resolution 
temperature data. Furthermore, the assumed base 
temperature and appropriate time period for 
integration for degree day calculations should be 
region-specific and can be optimized for the 
particular application domain (e.g., Sailor and 
Muñoz, 1997). Likewise, for certain regions the 
inclusion of Latent Enthalpy Days (analogous to 
cooling degree days, but for humidity) can be an 
important determinant of electricity loads.  
 With these issues as motivating factors we are 
developing a new load forecasting approach to be 
used as a tool in estimating peak loads. The load 
model will be trained using an enhanced set of 
weather parameters along with a Tree-Structured-
Regression (TSR) modeling tool in place of the 
commonly used Neural Network approach (e.g. 
Chow and Leung, 1996; Rahman and Hazim, 
1996; Caciotta et al., 1997; Dash et al., 1997). 
Finally, to provide improved weather input for load 
forecasting we are developing an urbanized 
version of the MM5 mesoscale model from the 
National Center for Atmospheric Research. This 
model will provide more detailed representation of 
weather in and around urban areas, and will 
become an integrated component of the load 
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forecasting system. This system, while still under 
development, will be described in this 
presentation.  

2. DATA 
 At the present time our focus is on city-scale 
short-term (e.g. 24-hour) forecasting of peak 
electric utility loads. The appropriate data for this 
analysis are summarized below. 

2.1 Utility Load Data 
 We chose the metropolitan New Orleans (NO) 
area for our initial model development primarily 
because we have an existing relationship with the 
sole-source provider of electricity for metropolitan 
New Orleans (Entergy Corporation) and therefore 
had relatively easy access to their load data. The 
utility data that we obtained for NO included hourly 
load data (MWH) from Jan.1, 1986 through Apr. 
30, 2001. Our initial analyses include only the first 
10 years of the data set. Also, as our interest is in 
peak load forecasting we manipulated the hourly 
load data set to create a peak load data set that 
includes date, peak load, and time of peak load. 
We augmented these data set by defining a day-
type variable (workday=”W” or not-workday=”N”). 

2.2 Meteorological Data 
 While the methodology being developed will 
eventually include enhanced meteorological model 
output for forecasting, initial model development 
(training) is being pursued using hourly 
meteorological data from the single nearby airport 
station (MSY). These data include hourly values of 
temperature, wind speed/direction, humidity, and 
cloud cover. We have calculated daily averages, 
maxima, and minima. We have also created the 
derived variables of cooling and heating degree 
days (using hourly data with a base temperature of 
18.2 C). We also intend to investigate using Latent 
Enthalpy Days in place of raw humidity data: 
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where E is the enthalpy and Eo the enthalpy at the 
measured temperature and a humidity ratio of 
0.0116. The constant α takes on a value of 1 if the 
temperature is above 25.6 oC and a value of 0 if 



the temperature is below this value or if the 
enthalpy difference is negative. Conceptualy, LED 
represents just the amount of energy required to 
lower the humidity to ASHRAE comfort levels 
without reducing air temperature. 

2.3 Combined Analysis Data Set 
 The daily data sets for load and weather were 
merged to create an analysis data set with 
complete information regarding peak loads and 
the corresponding weather parameters. In the 
present study we attempt to remove all non-
weather factors by defining a one-day forecast 
Peak Load Ratio as follows: 
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where PL(n) is the peak load for day n. As can be 
seen in Fig. 1, the day-to-day variability in peak 
loads is commonly on the order of 10 to 20%. 
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Fig. 1.  Day-to-day variability of peak load for one 
year of data (1995). 
 
 To develop a suitable model for PLR it is 
important to include relevant weather parameters 
for day n and n-1. Alternatively one can define 
weather parameter ratios or deviations for the two 
days. The day-type variable can also be modified 
to include all 4 permutations of the day-type 
variable for day n and n-1. This new day-type 
parameter takes on values of 1, 2, 3, or 4 for 
Workday and Non-workday combinations of NW, 
NN, WN, and WW, respectively. Fig. 2 shows the 
expected relationship between the day-type 
parameter and the corresponding peak load ratio 
for the two days. Specifically, for workdays that 

follow non-workdays - typically Mondays – 
(DAYTYPE=3) the PLR is usually greater than 
unity (average of 1.17). Likewise for non-workdays 
that follow workdays (DAYTYPE=1) the PLR is 
typically less than unity (average of 0.89). Within 
each day-type category in Fig. 2, the variability in 
PLR is illustrative of the role of weather variability.  

Fig. 2.  Peak load ratios for the 4 day-type 
combinations. 
 

3. MODELING APPROACH 
 The general approach is to use weather and 
peak load data for day n-1, along with a forecast of 
weather parameters for day n to estimate peak 
load for day n. This is accomplished indirectly by 
calculating the PLR(n), and can, in principle, be 
applied to forecasts ranging from 24 to 72 hours. 

3.1 Mesoscale Model 
 While the initial focus of model development 
involves training a peak load model using 
observational data, the eventual goal is to 
incorporate mesoscale model forecast output into 
the modeling system. To make the meteorological 
model more accurate for urban applications we 
are currently developing an urbanized version of 
the MM5. While many potential modifications are 
under consideration, this model will, at a minimum, 
include the following components: a diurnally-
varying albedo to represent the effect of solar 
zenith angle on the solar radiation absorbed by a 
city; a daily/seasonal anthropogenic heating profile 
to be incorporated as a perturbation to the surface 
air energy budget; and enhanced representation of 
urban surface characteristics by extending the 
single “urban” land use category from the USGS 
system to three or more sub-categories. Tradeoffs 
between accuracy and computational speed, while 
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not an issue in the initial model development will 
be important for successful operational load 
forecasting. 

3.2 Tree Structured Regression 
 There are a number of weather parameters 
that influence electric utility loads. Also, some of 
the parameters that are key to determining loads 
are categorical in nature (e.g., day of the week). 
The Tree Structured Regression (TSR) approach 
is uniquely suited to this type of problem. The 
basic premise is that some partitioning of the data 
pool is required before strong models can be 
developed for forecasting load. For example, each 
weather factor affects load differently depending 
upon whether the day is a weekday or weekend. 
Similarly the role of each weather factor in 
affecting load also depends on the general 
magnitude of other weather parameters. 
 Tree Structured Regression (TSR) is a subset 
of the statistical tools collectively known as 
Classification and Regression Trees (CART) and 
was pioneered by Breiman et al (1984). TSR is a 
guided (supervised) classification scheme that 
uses a predictand (such as peak load ratio) as 
guidance when generating clusters in the data 
pool. The "distance" between clusters is measured 
by the value of the predictand variable. 
 In any regression analysis, the condition that 
the learning and testing data sets should come 
from the same population must be met. Due to the 
inter-annual variability of utility loads, an arbitrary 
sampling procedure may result in an imbalance 
between learning and testing data sets. In our 
analyses, the learning and testing data sets are 
created using a random sampling procedure with 
67% of data points going to the learning data set. 
By putting all the data points in the same pool, the 
learning set can be well mixed (can include datum 
points from any month and any year). 
 Tree-Structured Regression generates a 
regression tree using a succession of binary rules 
(questions). In generating the tree all training data 
initially reside in a root node. This node (and each 
subsequent node) is split into two descendent 
nodes based on a binary question. The question is 
posed based on the value of an independent 
variable. In the case where peak load ratio is 
being predicted it is likely that ∆CDD will be a split 
variable and a representative question might be of 
the form: ∆CDD > β?, where β is some constant. 
Depending upon the answer to this binary 
question each training datum point travels to either 
the left or right descendent node. The choice of 
split variable and the actual value, β, for the binary 

question are determined in an optimization routine 
with the goal being to separate the initial node into 
two descendent nodes that are characteristic of 
distinctly different magnitudes of the dependent 
variable – peak load ratio in this case. Specifically, 
the optimal split is the one that minimizes the 
resubstitution estimate (RE): 
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where Li and Ri are the values of the independent 
variable for each point in the “L”eft and “R”ight 
descendent nodes, respectively, and the over-bar 
represents a mean over the node. The value of n 
is generally taken as 2 (for a least squares 
approach). 
 The extent of tree growth can be controlled as 
desired. The terminal nodes of the tree then 
represent categories of datum points. Typically, in-
node multiple linear regressions are performed in 
the terminal nodes and the binary rules combined 
with these regression equations represent the 
TSR model for the dependent variable. A sample 
tree with 2700 points of training data is shown in 
Fig. 3. For further details on the TSR approach 
see Breiman et al. (1984). 
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Fig. 3.  A portion of a hypothetical regression tree 
relating the Peak Load Ratio (PLR) to various 
weather-based rules. 
 

4. PRELIMINARY RESULTS 
 Initial analysis of our load data indicate strong 
correlations between PLR and the 1 and 2-day 
lagged degree day deviation variables ∆CDD1 and 



∆CDD2. The corresponding correlation coefficients 
are 0.46, and 0.37 respectively. As expected these 
correlations are significantly higher (double) than 
those of the corresponding raw temperature 
parameters. 
 Initial development of regression trees for PLR 
has resulted in strong models that have correlation 
coefficients in excess of 0.90, and are capable of 
explaining more than 80% of the variance in peak 
load ratios. The dominant (split) parameters in 
these trees are the day-type and heating/cooling 
degree-day variables. At the present time humidity 
is only incorporated in the models through the raw 
humidity variable and its daily differences. As a 
result humidity does not factor into the split 
variables, and is only incorporated in the multiple 
linear regression equations within the terminal 
nodes. It is expected that when Latent Enthalpy 
Day variables are included in the analysis they will 
also figure prominently in the list of split variables 
and will result in improved predictive capability. 
Fig. 4 shows the general prediction capabilities in 
terms of the predicted PLR vs. the actual PLR. 
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Fig. 4.  Sample plot showing quality of TSR results 
for a preliminary model that includes only 
traditional CDD and HDD variables (R=0.90). 
 

5. CONCLUSIONS 
 The methodology under development 
represents enhancements to traditional load 
forecasting approaches in several respects. First, 
the traditional variables used in load forecasting 
are expanded to include additional derived 
variables that are more closely tied with the 
weather-related causes of load variability. A 
second enhancement is the use of tree-structured 
regression for building the empirical relationships 
between load and weather variables. A final 

improvement, still under development is the 
urbanization of a mesoscale model for providing 
improved meteorological conditions for use in the 
load forecasting stage. Eventually these tools will 
be coupled in a single system for predicting peak 
loads. While 24-hour forecasts are the focus of the 
present work the approach is easily extended to 
longer forecast periods. 
 
Acknowledgements 
 The authors wish to thank Dr. Xiangshang Li 
for his ongoing assistance and insightful 
comments. Neel Sus assisted with the data 
manipulation. We also wish to acknowledge Jim 
Kenney and Doug Heinson at Entergy Corporation 
for providing the necessary load data. One author, 
PBB, wishes to acknowledge financial support of a 
graduate fellowship from the Louisiana Board of 
Regents. 
 
REFERENCES 
Breiman, L., J.H. Friedman, R.A. Olsen, and J.C. 

Stone, 1984: Classification and Regression 
Trees, Wadsworth. 

Caciotta, M., et al., 1997: Application of Artificial 
Neural Networks to Historical Data Analysis 
for Short-Term Electric Load Forecasting, 
European Transactions on Electrical Power, 7 
(1), 49-56. 

Chow, T.W.S., and C.T. Leung, 1996: Neural-
Network-Based Short-Term Load Forecasting 
of Anomalous Load Periods, IEEE 
Transactions on Power Systems, 11 (4), 1736-
1742. 

Dash, P.K. et al., 1997: A Real-Time Short-Term 
Load Forecasting System Using Functional 
Link Network, IEEE Transactions on Power 
Systems, 12 (2), 675-680.  

Gellings, C.W., 1996: Demand Forecasting in the 
Electric Utility Industry. Tulsa, Ok: Penn Well. 

Jameson, R., 1999: Managing Energy Price Risk, 
2nd Ed., London: Risk Books, 324pp. 

Rahman, S., and O. Hazim, 1996: Load 
Forecasting for Multiple Sites: Development of 
an Expert System-Based Technique, Electric 
Power Systems Research, 39 (3), 161-169. 

Sailor, D.J., and R. Muñoz, 1997: Sensitivity of 
Electricity and Natural Gas Consumption to 
Climate in the U.S. - Methodology and Results 
for Eight States, Energy, the International 
Journal, 22 (10), pp. 987-998. 


	1.	INTRODUCTION*
	2.	DATA
	2.1	Utility Load Data
	2.2	Meteorological Data
	Combined Analysis Data Set

	3.	MODELING APPROACH
	Mesoscale Model
	3.2	Tree Structured Regression

	4.	PRELIMINARY RESULTS
	5.	CONCLUSIONS
	Acknowledgements
	REFERENCES

