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1. INTRODUCTION

Data assimilation is typically used to generate initial
conditions for numerical weather forecasts. Therefore,
each analysis is based upon only current and past obser-
vations. However, when producing a retrospective ’reanal-
ysis’, one is free to use all available observations, including
those data collected after the analysis time.

A Kalman smoother is a direct generalization of the
Kalman filter which incorporates observations both before
and after the analysis time. Here we introduce the ensem-
ble square-root smoother (EnSRS), which applies recent
advances in the field of ensemble filtering to the fixed-lag
Kalman smoother proposed by Cohn et al. (1994). The
EnSRS uses Monte-Carlo estimates of forecast-analysis
error cross-covariances needed to compute the Kalman
smoother gain matrix. It is applied iteratively to a time se-
ries of observations, the first iteration is equivalent to an
ensemble Kalman filter analysis which only utilizes obser-
vations taken up to and including the analysis time. The
nth iteration utilizes observations taken n observing times
past the analysis time. Only the first iteration requires the
integration of a forecast model.

Previous studies using idealized ensemble data as-
similation systems (e.g. Hamill and Snyder 2000) have
shown that the flow-dependent background-error covari-
ances they provide are most beneficial when there
are relatively few observations, i.e. when the observ-
ing network is sparse. When observations are very
dense, the background-error covariances are not as flow-
dependent, and the improvement over schemes with static
background-error covariances, such as three-dimensional
variational assimilation (3DVar), is not as great. In
addition, the computational cost of recently proposed
ensemble-data assimilation algorithms (Houtekamer and
Mitchell 2001; Whitaker and Hamill 2001) is directly pro-
portional to the number of observations being assimilated.
Therefore, ensemble-based data assimilation should be
both more computationally feasible and provide the great-
est benefit over current operational schemes in situations
when observations are sparse. Reanalysis before the
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radiosonde-era (pre-1948) is just such a situation.
In a companion study presented at this conference,

the feasibility of reanalysis using only surface observa-
tions with an operational 3DVar system was demonstrated.
Here we present details of the EnSRS formulation, and
some results with a low-order model. Results with a more
realistic general-circulation model will be presented at the
conference which demonstrate how this method can trans-
late information provided by surface observations into the
middle and upper troposphere much more effectively than
schemes with static background-error covariances.

2. AN ENSEMBLE SQUARE-ROOT
SMOOTHER

Whitaker and Hamill (2001) introduced the ensemble
square-root filter (EnSRF) as an alternative to the en-
semble Kalman filter (EnKF) which does not require that
noise be added to the observations (e.g. Houtekamer and
Mitchell 1998; Burgers et al. 1998). The basic idea is that
the ensemble mean and for deviations from the ensemble
mean are updated separately in such a way the the en-
semble mean analysis and analysis covariance are con-
sistent with that predicted by Kalman filter theory.

Following the notation of Ide et al. (1997), let xb be an
m-dimensional background model forecast; let yo be an
p-dimensional set of observations; let H be the operator
that converts the model state to the observation space; let
Pb be the m � m-dimensional background error covariance
matrix; and let R be the p � p-dimensional observation-
error covariance matrix. The minimum error-variance es-
timate of the analyzed state xa is then given by the tradi-
tional Kalman filter update equation (Lorenc 1986),

xa � xb � K � yo � Hxb �	� (1)

where

K � PbHT � HPbHT � R ��
 1 � (2)

The analysis error covariance Pa is reduced by the intro-
duction of observations by an amount given by

Pa � � I � KH � Pb � I � KH � T � KRKT � � I � KH � Pb � (3)



In ensemble data assimilation, Pb is approximated using
the sample covariance from an ensemble of model fore-
casts. For the rest of the paper, the symbol P is used to
denote the sample covariance from an ensemble, and K
is understood to be computed using sample covariances.
Expressing the variables as an ensemble mean (denoted
by an over-bar) and a deviation from the mean (denoted
by a prime), the update equations for the EnKF may be
written as

xa � xb � K � yo � Hxb �	� (4)

x
� a � x

� b � �K � y � o � Hx
� b �	� (5)

where Pb � x
� bx
� bT � 1

n 
 1 ∑n
i � 1 x

�
b

i x
�
bT

i , n is the ensem-
ble size, K is the traditional Kalman gain given by (2) and�
K is the gain used to update deviations from the ensem-
ble mean. Note that wherever an over-bar is used in the
context of a covariance estimate a factor of n � 1 instead
of n is implied in the denominator, so that the estimate

is unbiased. In the EnKF,
�
K � K � and y

� o
are randomly

drawn from the probability distribution of observation er-

rors (Burgers et al. 1998). This choice of y
� o

ensures that
for an infinitely large ensemble, (3) will be satisfied exactly
(Burgers et al. 1998). However, as pointed out by Whitaker
and Hamill (2001), for a finite ensemble (3) will not be sat-
isfied exactly, and the noise added to the observations acts
as an extra source of sampling error, degrading the perfor-

mance of the filter. In the EnSRF, y
� o � 0 and

�
K is given

by�
K �
PbHT

�
��� HPbHT � R � 
 1 � T �	� � HPbHT � R � � � R � 
 1

(6)
(Andrews 1968). This choice guarantees that (3) is sat-
isfied exactly. If R is diagonal, observations may be as-
similated serially, one at a time (Gelb et al. 1974), and the
above expression simplifies to�

K ��
 1 �� R
HPbHT � R � 
 1

K � (7)

where R and HPbHT are scalars, and K is a vector of
the same dimension as the state vector of the model.
This was first derived by Potter (1964). Although (6) re-
quires the computation of two matrix square-roots, the se-
rial processing version (7) requires only the computation of
a scalar factor to weight the traditional Kalman gain, and
therefore is no more computationally expensive than the
EnKF.

Cohn et al. (1994) introduced a fixed-lag Kalman
smoother as a means of providing retrospective analysis

capability in data assimilation. The basic equations for the
lag-0 implementation are the same as those of the Kalman
filter (equations (1) - (3) above). For lag l � 0,

xa
k � k � l

� xa
k � k � l 
 1

� Kk � k � l � yo
k � l

� Hk � lxb
k � l � k � l 
 1

�	� (8)

where

Kk � k � l
�

� Hk � lPba
k � l � k � k � l 
 1

� T �Hk � lPb
k � l � k � l 
 1HT

k � l
� Rk � l � 
 1 �

(9)
The subscript notation m � n refers to a quantity at obser-
vation time m, which incorporates knowledge of all obser-
vations up to and including time n. Thus, the standard
Kalman filter update equation (1), expressed in this nota-
tion, would be

xa
k � k � xb

k � k 
 1
� Kk � k � yo

k
� Hkxb

k � k 
 1
�	� (10)

where

Kk � k � � HkPb
k � k 
 1

� T �HkPb
k � k 
 1HT

k
� Rk � 
 1 � (11)

The EnSRS gain, Kk � k � l, involves Pba
k � l � k � k � l 
 1 which is the

forecast-analysis error cross-covariance matrix between
the the background field used in the Kalman filter update
equation for time k � l, and the lag l � 1 Kalman smoother
analysis for time k. In the formulation of Cohn et al. (1994),
this quantity is computed by propagating Paa

k � 1 
 1 � k � k � l 
 1 di-

rectly using the dynamical model. In the Monte-Carlo for-
mulation proposed here, the relevant quantity can be com-
puted directly from the ensemble via

� Hk � lP
ba
k � l � k � k � l 
 1

� T � x
�
a

k � k � l 
 1 � Hk � lx
�
b

k � l � k � l 
 1
� T � (12)

Therefore, the dynamical model need only be used to cre-
ate the first-guess ensemble for the l � 0 filter analysis.
Following the methodology used in the EnSRF, the lag l
ensemble mean analysis is computed using (8), (9) and
(12). The lag l analysis for deviations from the ensemble
mean is computed using

x
�
a

k � k � l
� x

�
a

k � k � l 
 1
� �Kk � k � lHk � lx

�
b

k � l � k � l 
 1
� (13)

where
�
Kk � k � l is defined so that the ensemble analysis-

error cross-covariance is exactly equal to the value pre-
dicted by the theory of Cohn et al. (1994),

Pa
k � k � l

� Pa
k � k � l 
 1

� Kk � k � lHk � lP
ba
k � l � k � k � l 
 1

� (14)

If observations are processed one at a time,
�
Kk � k � l is a

straightforward extension of the lag l � 0 result,�
Kk � k � l

� 
 1 �� Rk � l

Hk � lPb
k � l � k � l 
 1HT

k � l
� Rk � l � 
 1

Kk � k � l
�

(15)



Performing a lag l EnSRS reanalysis processing ob-
servations serially at the analysis times ti � t0 � i∆t � i �
1 � 2 � � � � I involves the following steps;

1. Perform n parallel EnSRF analyses for each ti
� i �

1 � 2 � � � � I � l, using (4), (5), (2) and (7) to update each
of the n ensemble members. At each step a forecast
model is then integrated forward n times using each
analysis as an initial condition. The background-error
covariances needed to compute the Kalman gain are
computed using the sample covariance.

2. Perform n lag 1 EnSRS analyses for the observa-
tion times ti � i � 1 � 2 � � � � I � l � 1 using (8) and (13) to
update the ensemble mean and deviations, respec-
tively. The sample covariance between the back-
ground forecasts at time ti � 1 and the filter analyses
at time ti from step (1) are computed via (12).

3. Perform n lag 2 EnSRS analyses for the observation
times ti

� i � 1 � 2 � � � � I � l � 2, using the sample covari-
ance between the background forecasts performed in
step (1) at time ti � 2 and the lag 1 EnSRS analysis at
time ti produced at step (2) to compute the Kalman
smoother gain in (9).

4. Repeat the procedure in step (3) for lags 3 to l. Each
step uses the background forecasts at the observa-
tion locations from step (1) and the EnSRS analyses
produced at the previous step.

This is essentially an iterative process with the nth iteration
using observations up to and including n observing times
past the observation time.

3. RESULTS WITH A LOW-ORDER
MODEL

At the conference, results of experiments with a T47,
15-level dry GCM will be presented, in which surface
“pseudo-observations”, sampled from an integration of the
same model, are assimilated using the algorithm just de-
scribed. The effect of the flow-dependant error covari-
ances and smoother lag on the quality of the analysis, es-
pecially in the middle and upper troposphere, will be em-
phasized. Here we present some preliminary results with
a much simpler model, the 40-dimensional model Lorenz
and Emanuel (1998). This model is governed by the equa-
tion

dXi

dt
� � Xi � 1

� Xi 
 2
� Xi 
 1

� Xi
� F � (16)

where i � 1 � � � � � m with cyclic boundary conditions. Here
we use m � 40, F � 8 and a fourth-order Runge-Kutta
time integration scheme with a time step of 0.05 units. For

this parameter setting, the leading Lyapunov exponent im-
plies an error-doubling time of about 8 time steps, and the
fractal dimension of the attractor is about 27 (Lorenz and
Emanuel 1998). For our assimilation experiments, each
state variable is observed directly, and observations have
uncorrelated errors with unit variance. Observations are
processed serially (one after another) and are assimilated
every time step for 10000 time steps (after a spin-up period
of 1000 time steps).
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Figure 1: Ensemble mean error as a function of smoother
lag for the 40-variable Lorenz model. Results are shown
for a 10 (dotted) and a 50 (solid) member ensemble.

Figure 1 shows the ensemble mean error and ensem-
ble spread as a function of smoother lag (l), for a 10 and
50 member ensemble. For a 10 (50) member ensemble,
the EnSRS yields a 15% (27%) improvement in ensemble
mean analysis error relative to the EnSRF for lag l = 5 (9).
The differences between the errors in a 10 and a 50 mem-
ber ensemble increase with filter lag. This indicates the
sampling error in the estimation of the forecast-analysis
error cross-covariance (Pba

k
�

l � k � k �
l � 1) increases with l, so

that a larger ensemble is needed to take advantage of ob-
servations farther removed from the analysis time. This is
also consistent with the fact that, even with a 50 member
ensemble, the quality of the analysis starts to degrade as
the lag is increased beyond a certain point (about lag 9
for the 50 member ensemble and lag 5 for the 10 member
ensemble). As discussed in Whitaker and Hamill (2001),
sampling error can cause filter divergence in any ensem-
ble data assimilation system, so some extra processing
of the ensemble covariances is almost always necessary.
The two techniques used here are distance-dependent co-
variance filtering (Houtekamer and Mitchell 2001; Hamill
et al. 2001) and covariance inflation (Anderson and An-



derson 1999). For the results shown in Fig. 1, the pa-
rameters controlling the covariance filtering and inflation
have been tuned to give the best filter (lag 0) analyses.
These results indicate that since sampling error apparently
increases with increasing lag, the optimal values of the co-
variance filter and inflation parameters are likely lag de-
pendent.
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