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1 Introduction

A few years ago the National Center for Environ-
mental Prediction (NCEP, former National Meteo-
rological Center; Parrish and Derber 1992) and the
European Centre for Medium-Range Weather Fore-
casts (ECMWF, Courtier et al. 1998) converted
their analysis systems from optimal interpolation
(OI) to 3-dimensional variational spectral statisti-
cal interpolation (spectral 3D-Var). In the same
spirit, the NASA/Data Assimilation Office has re-
placed its OI system with the physical-space statis-
tical analysis system (PSAS), which is a variant of
the spectral 3D-Var schemes operating directly in
physical space instead of spectral space (Cohn et al.
1998). One of the purposes of these new schemes
is to have a data assimilation system capable of
performing global analysis, thus avoiding the ques-
tionable local approximations required in OI. Both
the spectral and physical-space approaches repre-
sent improvements over OI, but do not readily pro-
vide computationally feasible means of estimating
analysis error standard deviations due to their im-
plementation formulation.

The importance of determining analysis errors is
manifold. The most common motivation is to fa-
cilitate development of advanced data assimilation
schemes. Any attempt to evolve error covariances,
in the direction of Kalman filter-like methods, re-
quires knowledge of analysis errors and, more gen-
erally, of the complete analysis error covariance.
These errors are also needed to provide the cor-
rect norm for singular-vector-based forecast sys-
tems (Barkmeijer et al. 1998), and can also be used
in conjunction with the breeding method (Toth and
Kalnay 1997). But if for nothing else, these er-
rors provide a rough measure of analysis quality.
Knowledge of analysis accuracy is fundamental for
development and validation of new observing in-
struments, and can also be used as background er-
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rors in retrieval algorithms.
In this article we discuss results of analysis er-

ror estimates calculated using two distinct methods
implemented in PSAS. The first method resembles
Fisher’s procedure but is designed in the proper
PSAS context and with the PSAS philosophy in
mind, that is, perform operations in observation
space. The second method is that proposed by Ri-
ishøjgaard (2000). In section 2 we present these
methods. Section 3 shows some results, and re-
marks are made in section 4.

2 Technicalities

In analysis systems such as PSAS an estimate of the
analysis errors can be obtained from the diagonal
of the n × n analysis error covariance matrix, Pa,
given by

Pa = Pf −PfHTΓ−1HPf , (1)

[e.g., Todling and Cohn (1994), eq. (3.19d)], where
Γ is the innovation covariance matrix given by

Γ ≡ HPfHT + R , (2)

and Pf and R are the n × n forecast and p × p
observation error covariance matrices, respectively.
Equation (1) is not directly implemented in any op-
erational assimilation system, particularly due to
the typical size of the analysis state vector, i.e.,
n ≈ 106. If anything, advanced data assimilation
systems have Pa, or its inverse as for analysis sys-
tems such as ECMWF’s, implemented as an op-
erator, thus allowing for matrix-vector operations.
This feature has been exploited in Barkmeijer et al.
(1998) and Klinker et al. (1998) to obtain mean-
ingful singular vectors for ensemble forecasting pur-
poses, and to obtain estimates of analysis errors in
a specific direction determined by the singular vec-
tors, respectively. These works were not aimed at
estimating analysis errors as complete fields rep-
resenting the analysis accuracy. Fisher (1996) pre-
sented an attempt to derive complete analysis error
variance fields, in the context of spectral variational
analysis. Fisher’s algorithm is based on performing
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a truncated eigendecomposition of the spectral 3D-
Var Hessian. The algorithm is computationally ex-
pensive since it operates in the analysis state space.

In PSAS, (1) is available in operator form, par-
ticularly the so called error reduction term ∆Pa ≡
PfHTΓ−1HPf . Therefore, we can in principle use
a Lanczos-type algorithm to calculate the dominant
eigenmodes of this matrix and generate conserva-
tive estimates of analysis error variances in a corre-
spondingly equivalent procedure as that developed
by Fisher for the spectral 3D-Var Hessian. How-
ever, this would suffer from similar computational
demands as it would operate in the analysis space.
Alternatively, we can follow the same rational used
behind transforming the analysis equations from OI
into its PSAS equivalent and have the problem in
hand be solved in observation space.

Let us write the eigendecomposition of the error
reduction term ∆Pa as

∆PaY = YΛ , (3)

where Λ is the p×p diagonal eigenvalue matrix and
Y is the n × p matrix of eigenvectors; the size of
these matrices is determined by the rank of ∆Pa.
Defining

X ≡ Γ−1HPfY , (4)

we arrive at the following generalized eigenvalue
problem involving X:

HPfPfHTX = ΓXΛ , (5)

where Λ is a diagonal matrix of eigenvalues, and we
notice that this eigendecomposition operates in ob-
servation space. Assuming that only a certain num-
ber p̃ of dominant eigenmodes are needed to obtain
a reliable approximation of the error reduction ma-
trix, and representing these truncated eigendecom-
position by the pair of eigenvalue-eigenvector ma-
trices Λ̃ and X̃ of dimensions p̃ × p̃ and p × p̃, re-
spectively, the approximate error reduction matrix,
denoted by ∆Sa, can be obtained as

∆Sa ≡ PfHT X̃X̃THPf . (6)

In writing the expression above we notice that
X̃ is Γ-normalized, that is, X̃TΓX̃ = Ip̃×p̃.
The amount of error reduction variance ex-
plained by this approximation follows immediately
from the eigenvalue matrix through the ratio
trace(∆Sa)/trace(∆Pa) = trace(Λ̃)/trace(∆Pa).
In practice, an estimate of the trace of ∆Pa is
needed and can be obtained, as in our imple-
mentation in PSAS, by using randomized trace
estimation (Girard 1991).

Riishøjgaard (2000) proposed another algorithm
to derive estimates of analysis error variances. In-
stead of using a spectral truncation of the error re-
duction matrix, Riishøjgaard’s procedure is based
on using a spectral truncation of the innovation co-
variance matrix. In this case, we can write the
partial eigendecomposition of Γ as

ΓZ̃ = Z̃Ω̃ , (7)

where Ω̃ is the p′ × p′ diagonal matrix the p′ dom-
inant eigenvalues, Z̃ is the p × p′ matrix whose
columns correspond to the p′ dominant eigenvec-
tors of Γ. Therefore, similarly to (6), Riishøjgaard’s
approximation for the error reduction term in (1)
is given by

∆Sa ≡ PfHT Z̃Ω̃−1Z̃THPf . (8)

Here, the trace of ∆Sa cannot be obtained directly
from the eigenvalue matrix Ω̃ as this relates to the
trace of the innovation covariance. This is one dif-
ferent between approximations (6) and (8), that is,
the amount of explained error reduction variance
in Riishøjgaard’s approximation cannot be assessed
directly from the eigenvalues. Correspondingly, the
eigenvector matrix used in (8) contains structures
that are not necessarily the dominant structures
in the error reduction matrix. This subtlety has
been recognized by Riishøjgaard (2000) and may
be of relevance depending on the observing sys-
tem configuration and error covariances involved
in the problem. Similar remarks are made in Daley
and Barker (2000) when comparing two procedures
for analysis error variance estimation referred to by
these authors as global and local approximations,
which essentially correspond to variants of approx-
imations (6) and (8), respectively.

An important consideration in developing ap-
proximations to estimate analysis error variances
is computational cost. In both of the approxima-
tion above there are two main parts contributing to
computation burden: (i) the corresponding eigen-
decompositions; and (ii) the operations of PfHT

to as many (scaled) eigenvectors are required. The
latter cost is equally incurred in both schemes
above, therefore, comparatively the final cost is de-
termined by the cost of solving the different types of
eigenvalue problems in these two approximations.
The generalized eigenvalue problem in (5) requires
application of the operator HPfPfHT to a vec-
tor at each iteration of the Lanczos-type procedure.
Furthermore, (5) also requires a conjugate gradient
solution at each iteration of the Lanczos-type pro-
cedure (e.g., Lehoucq et al. 1997). And finally, af-
ter the eigenvalues have converged to the requested
accuracy, the converged eigenvectors need to be



rescaled by the “mass” matrix Γ. Conversely, in Ri-
ishøjgaard’s procedure the only operation needed is
the application of Γ to a vector within the Lanczos
iterations. This renders Riishøjgaard’s procedure
considerably more attractive from a computational
standpoint.

3 Results

In this section we show results obtained with the
two procedures described in the previous section for
deriving estimates of analysis error variances from
PSAS. We seek for estimates of geopotential height
analysis error variances at levels 700 mb, 500 mb,
400 mb, and 300 mb induced by the assimilation of
radiosondes geopotential heights and DAOTOVS
geopotential height retrievals, between these four
levels, for 0Z, 1 February 1998. Fig. 1 displays the
distribution of observations at 500 mb: radiosondes
(top); DAOTOVS (bottom). Notice the almost in-
existent overlap between the two types of observing
systems due to shadowing of retrievals in the neigh-
borhood of the radiosonde data. Also, the retrievals
are thinned to a resolution of roughly 5o longitude
by 4o latitude and therefore become comparatively
less dense than the radiosonde network over regions
such as North America, Europe and Asia.
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Figure 1: Map of 500 hPa geopotential height ob-
servations from the radiosonde network (top) and
TOVS retrievals (bottom) on 0Z, 1 February 1998.

The structure of analysis errors is dependent on
the observing system as well as in the forecast and
observation covariances. Particularly, these errors

are largely dependent on the forecast error stan-
dard deviations. The top panel of Fig. 2 shows the
500 mb geopotential height error standard devia-
tion for the date and time considered here. It is
relevant to mention that currently, in PSAS, these
errors are representative of a monthly mean er-
ror rather than an actual snap shot, however, this
should not affect the qualitative conclusions drawn
from the results discussed below.

Figure 2: Map of 500 hPa geopotential height fore-
cast (top) and analysis (bottom) error standard de-
viations; analysis errors result correspond to exact
result.

The four-level analysis case-study here includes
a total of 7203 observations. In this case, it is still
possible to calculate the exact analysis error vari-
ances without using either one of the approxima-
tions in the previous section. The bottom panel in
Fig. 2 shows the exact geopotential height analy-
sis error standard deviation at 500 mb. Comparing
both panels in the figure we see the considerable
error reduction due to the observations; a compari-
son with Fig. 1 shows the not surprising result that
most of the error reduction occurs over the observ-
ing network — even the signature of the satellite
tracks are visible in the structure of the analysis
error standard deviations. The largest error reduc-
tion occurs over the radiosonde network. This is
attributed to essentially three factors: the higher
density of the radiosonde network over that of the
retrievals; the slightly more accurate nature of the
radiosonde data reflected in their observation er-
ror standard deviations; and the horizontally cor-
related nature of the retrieval errors, implying in



the retrievals having smaller information content
than the horizontally uncorrelated radiosonde ob-
servations.

Figure 3: Percentage of total analysis error reduc-
tion variance captured when using (6; open circles)
and (8; closed circles).

The significance of the approximations in (6) and
(8) can be captured by looking at how much of the
total error reduction variance is represented when
using a certain number of eigenmodes in each ap-
proximation. That is, we can plot the quotient
100×trace(∆Sa)/trace(∆Pa), for each ∆Sa calcu-
lated for a given number of modes, and for a each
procedure. The top panel of Fig. 3 displays this
quotient for the approximation in (6; open circles),
and that in (8; closed circles). We see that the
approximation solving the generalized eigenvalue
problem always captures more variance than Ri-
ishøjgaard’s approximation, but the difference does
not seem to be very significant. As a matter of fact,
it is difficult to see the benefits of (6) over (8) when
looking at a map of their corresponding analysis er-
ror standard deviations (not shown). This conclu-
sion is certainly dependent on the present configu-
ration of PSAS as determined by its forecast and
observation error covariances. We illustrate this
point by showing in the bottom panel of Fig. 3
how the percentage variance quotient changes when
the observation errors for the retrievals are arti-
ficially increased, that is, when the retrievals are
made more inaccurate. In this case, the distinction
between the two approximations becomes more rel-
evant and considerably more variance is captured
by basing the approximation in the solution of the
generalized eigenvalue problem.

Figure 4: Maps of approximate analysis errors cal-
culated using Riishøjgaard’s procedure: top panel
obtained when 60 modes are used in (8); bottom
panel obtained when 650 modes are used (8). er-
ror standard deviations; analysis errors result cor-
respond to exact result.

As illustration of analysis error standard devi-
ations obtained with Riishøjgaad’s procedure Fig.
4 displays results when 60 eigenmodes (top panel)
and 650 eigenmodes are included in the approxi-
mation. With 60 eigenmodes a lot of the forecast
error signature is still present, particularly over the
Southern Hemisphere high latitudes where obser-
vations are not very dense (see Fig. 1). However,
with 650 modes, which is less than 10% percent of
the total number of observations, most of the struc-
ture in the exact analysis error standard deviations
displayed in the lower panel of Fig. 2 is capture.

4 Closing remarks

We have compared two methods to calculate ap-
proximate analysis error variances in the context of
PSAS. The first method is based on a generalized
eigenvalue problem involving the square of the fore-
cast error covariance matrix and the innovation co-
variance matrix. The second method is that of Ri-
ishøjgaard (2000) and involves the eigendecomposi-
tion of the innovation covariance matrix. The first
procedure has the advantage of providing direct in-
formation on the amount of analysis error variance
captured for a given number of eigenmodes, while
the same is not so for the second method. However,



when computational requirements are taken in to
account, Riishøjgaard (2000) procedure is far more
attractive.

Furthermore, with the current configuration of
PSAS, that is, current forecast and observation er-
ror covariances, as well as observational coverage,
our experiments show that for a given number of
modes Riishøjgaard (2000) procedure captures only
slightly less variance than the procedure solving the
generalized eigenvalue problem. Combining this
with computational requirements it seems more ad-
equate to use Riishøjgaard’s procedure to estimate
analysis error variances with PSAS.

Some of the conclusions from our work are very
much in accordance with the findings in Daley and
Barker (2000), particularly in what refers to com-
putational issues. Although an algorithm based on
Riishøjaard’s approximation seems to be the more
promising for practical applications than other al-
ternatives, our current implementation is nowhere
near prime time: to get a reasonable estimate of
the analysis error variances using all analysis levels
and the typical number of observations in a synop-
tic time the computational cost would be of about
one order of magnitude larger than it takes to per-
form a single PSAS analysis. The use of local ap-
proximations of the innovation covariance Γ, and
correspondingly of the “projection matrix” PfHT ,
as used in Daley and Barker (2000), is a potential
alternative. Work is in progress to merge the de-
velopment of the so called reduced PSAS (Lyster
et al. 2001, personal communication), which local-
izes these matrices, with the development of the
analysis error algorithm. This combination is ex-
pected to bring the cost of producing analysis error
variance estimates down to an acceptable level.
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