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1. INTRODUCTION

  A practical way for providing probabilistic forecasts is
through ensemble forecasting.  In ensemble forecasting,
the probability distribution function (PDF) at the initial
time is represented by a finite sample of possible initial
conditions.  A nonlinear model integration is performed
on each of these states.  If 1) the deficiencies of the
numerical model are negligible, and 2) the sample of
initial states provides a realistic estimate of the
probability distribution of the control analysis errors,
then the ensemble forecast produces a realistic
distribution of forecast states and thus the relative
frequency of forecast model outcomes can be used to
generate calibrated probabilistic forecasts.
  So far, most operational centers focus on the
generation of initial perturbations with the assumption
that the forecast model is perfect.  The best method for
generating initial perturbations is still in debate.  Of all
ensemble generation schemes, the breeding method
(Toth and Kalnay 1993, 1997) developed and applied by
the National Center for Environmental Prediction
(NCEP) is the most computationally inexpensive.  The
fundamental hypothesis of this method is that analysis
errors are filtered forecast errors.  In the simplest form
of the breeding method, forecast perturbations are
transformed into analysis perturbations by multiplying
each of the forecast ensemble perturbations by a
constant factor whose magnitude is less than one.
Thus, the effect of variations in the distribution of
observation sites on the analysis errors is neglected.
Furthermore, directions corresponding to slowly growing
modes may be completely filtered out from the
ensemble perturbation subspace, which implies that
there is a danger of breeding modes becoming parallel
to each other.
  The ensemble transform Kalman Filter (ETKF) theory
of Bishop et al. (2001) suggests an alternative method
of recycling or breeding perturbations to that suggested
in Toth and Kalnay (1993, 1997). The ETKF ensemble
generation scheme produces perturbations by solving
the equation relating analysis error covariance to
forecast error covariance for an optimal data
assimilation scheme within the vector subspace of
ensemble perturbations. The primary aim of this paper
is to illustrate how the ETKF method solves the
aforementioned problems of the breeding method with
little increase in computational cost.
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2. THE ETKF THEORY

  The ensemble transform Kalman filter (ETKF) is a
suboptimal Kalman filter (cf Daley 1991).  It not only
provides a framework for assimilating observations and
estimating the effect of observations on forecast error
covariance, but also provides a framework for
generating ensemble perturbations.
  Different from the breeding method that transforms
forecast perturbations into analysis perturbations by
multiplying each of the forecast ensemble perturbations
by a constant factor whose magnitude is less than one,
the ETKF method transforms forecast perturbations into
analysis perturbations by a transformation matrix T , that
is,
                                  TZZ fa = ,                                  (1)
where forecast perturbations are listed as columns in
the matrix fZ  and analysis perturbations are listed as
columns in the matrix aZ .  The transformation matrix T
is chosen in order to ensure that the covariance matrix
associated with the transformed perturbations aZ  would
be precisely equal to the true analysis error covariance
matrix aP  if the covariance matrix of the raw forecast
perturbations were equal to the true forecast error
covariance matrix fP and the data assimilation scheme
were optimal.  For an optimal data assimilation scheme,
                  f1TfTffa HPRHHPHPPP −+−= )( ,              (2)
where the matrix H is the observation operator that
maps model variables to observed variables and the
matrix R  is the observation error covariance matrix.
  As shown in Bishop et al. (2001), if
                                  Tfff ZZP )(= ,                             (3)
 then equation (2) is satisfied by letting
                               TfTfa ZTTZP )(=                           (4)
provided
                                  2/1)( −+= IΓCT ,                          (5)
where columns of the matrix C  contain the
eigenvectors, and the elements of the diagonal matrix
Γ  contain the corresponding eigenvalues of

f1TTf HZRHZ −)( .  Note that since
                       1f1TTfT IΓΓTHZRHZT −− += )()(               (6)
the analysis perturbations are orthogonal in observation
space under a Euclidean norm normalized by the
observation error covariance.
   The matrix f1TTf HZRHZ −)( is KxK where K is the
number of ensemble perturbations. Consequently, the
main computations required for ETKF ensemble
generation are the KxK inner products in observation
space required to form the elements of f1TTf HZRHZ −)(



together with the eigenvector decomposition of
f1TTf HZRHZ −)( .  The number of operations required for

these computations is much less than that required for
the generation of singular vector (SV) perturbations
(Buizza and Palmer, 1995; Molteni et al., 1996) or
system simulation ensembles (Houtekamer et al., 1996).
In the example to be presented here, ETKF ensemble
generation was only slightly more expensive than
breeding.
  Since ETKF generation rotates and rescales
perturbations according to equation (2), it is the
distribution and quality of observations that controls
perturbation amplitude.  Furthermore, consistent with
the filtering properties of an optimal data assimilation
scheme, ensemble variance is reduced in directions
corresponding to large forecast error variance more
than it is in directions corresponding to small forecast
error variance.  Thus, one would expect ETKF
generated ensemble perturbations to retain a wide
range of uncorrelated amplifying directions.

3. NUMERICAL EXPERIMENT

  To test our expectations about the qualitative
differences between the two techniques, we ran 16-
member (one control forecast and 15 perturbed
forecasts) T42 NCAR Community Climate Model
(CCM3) ensembles starting from the NCEP/NCAR
reanalysis data for both the ETKF and breeding
methods for the boreal (NH) summer in 2000.  For the
ETKF ensemble generation scheme, it is assumed that
the observational network consisted solely of
rawinsondes released every 12 hours at the sites shown
in Fig. 1.  For both methods, the maximal likelihood
parameter estimation theory (Dee, 1995) is used to
ensure that the 12-hour forecast ensemble variance is
consistent with control forecast error variance at
rawinsonde observation sites.

4. COMPARISON OF THE BREEDING AND THE
ETKF METHODS

4.1 Initial Perturbations

  Fig. 2 compares square roots of the seasonal mean
vertically averaged ensemble wind variance at the
analysis time for the breeding method (Fig. 2a) and the
ETKF method (Fig. 2b).  First, initial perturbation
amplitude in the observation scarce Southern
Hemisphere is much larger for the ETKF method than it
is for the breeding method.  Second, despite the high
concentration of rawinsondes over the Eurasian
continent, the initial breeding perturbation amplitude is
locally maximized in this region.  In contrast, the initial
ETKF perturbation amplitude is quite small in this
region. The manner in which this 16-member ETKF
generation method has allowed ensemble spread to be
governed by observational density is better seen by
plotting maps of the ratio of vertically and seasonally
averaged analysis root mean square (rms) wind error
over vertically and seasonally averaged forecast rms
wind error. Such maps give a representation of the

geographical distribution of the factor that rescales 12-
hour forecast ensemble spread into 0-hour ensemble
spread.  Fig’s 3a and 3b display this ratio for the 8-
member and 16-member ETKF ensembles,
respectively.  Fig 3b shows that the effective rescaling
factor for the 16-member ETKF ensemble not only
reflects the high concentrations of observations over
Europe and North America, it also crudely accounts for
the smaller mid-latitude concentrations over South
Africa, Australia and South America. In contrast, Fig. 3a
shows that the ETKF 8-member ensemble does not
contain enough independent error directions to account
for the mid-latitude concentrations of rawinsondes over
South Africa, Australia and South America.  The
superiority of the 16-member results over the 8-member
results leads us to suspect that the sensitivity of ETKF
ensemble rescaling factors to variations in observational
density would be further improved by moving to a 32-
member ensemble.

Fig. 1 Black dots indicate rawinsonde stations.

Fig. 2  Square root of seasonally (boreal summertime) and
vertically averaged ensemble wind variance of Initial ensemble
perturbations for (a) the breeding ensemble and (b) the ETKF
ensemble. Lable H indicates local maxima.



Fig. 3 The ratio of vertically and seasonally averaged analysis
rms wind error over vertically and seasonally averaged 12-hour
forecast rms wind error.  Values in the shaded area are equal
or less than 0.92 that is the median of the contour levels with
interval 0.01 for both (a) and (b).

Fig. 4 Boreal summertime mean of eigenvalues.  White and
black columns pertain to the 16-member breeding and the 16-
member ETKF ensembles respectively.

4.2 Ensemble Subspace

  Fig. 4 compares the seasonal mean spectrums of
eigenvalues of the ensemble based 12-hour forecast
error covariance matrices for the 16-member breeding
ensemble and the 16-member ETKF ensemble.  The
spectrum of ETKF eigenvalues is much flatter than that
of the breeding eigenvalues.  In other words, while there
are large amounts of ensemble forecast variance
present in all 15 uncorrelated orthogonal directions of
the ETKF ensemble, nearly all of the breeding ensemble
forecast variance is contained in a single direction.
Furthermore, for the breeding ensemble there is nearly
zero variance in the three uncorrelated orthogonal
directions corresponding to the smallest three
eigenvalues.  Although such severe rank reduction
would be inhibited by the masks used in the form of the
breeding method used operationally at NCEP, it is still a
cause for concern.

4.3 Ensemble Skill

  A quick evaluation on the quality of the breeding and
ETKF ensembles for the 8-member ensembles is
performed by comparing the error variance of the
ensemble mean and the error correlation between
ensemble members.   Table 1 shows the average
correlation and the ensemble mean error variance of 1
to 5 day forecasts of 250 hPa temperatures at global
rawindsonde sites for both the breeding and the ETKF
ensemble. It turns out that throughout 1 to 5 day
forecasts the breeding ensemble is more correlated
than the ETKF ensemble and the ensemble mean of the
breeding ensemble is less accurate than that of the
ETKF ensemble.  Presumably, the relatively large error
correlation found for both techniques in 5-day forecasts
is due to model error.
  Because the ensemble mean does not represent an
optimal combination of either breeding or ETKF
ensemble members, a comparison on the skill of optimal
combinations of ensemble forecasts is needed.  The
optimal combinations are obtained from the covariances
of the errors in each of the ensemble forecasts via a
straightforward application of the estimation theory by
Cohn (1997).  Table 1 shows that the optimal
combination of the breeding ensemble is less accurate
than that of the ETKF ensemble.

5. SUMMARY AND DISCUSSION

  The ETKF ensemble generation scheme transforms
forecast perturbations into analysis perturbations by
solving the equation relating the forecast and analysis
error covariances of an optimal data assimilation
scheme within the ensemble perturbation subspace.
Consequently, analysis perturbation magnitudes reflect
the density and accuracy of observations and analysis
perturbations are orthogonal in observation space. In
addition, the directions corresponding to large forecast
error variance in observation space are attenuated more
than the directions corresponding to small forecast error
variance.  Each ETKF analysis perturbation represents
a linear combination of forecast perturbations. Thus,
assuming forecast perturbations are balanced, ETKF



analysis perturbations are also balanced provided
forecast perturbation amplitude is small enough to justify
a linearization of the balance equation.
  The computational expense of the ETKF technique is
very small compared to that of the singular vector
technique and the system simulation approach. In the
examples considered here, the computational expense
of the ETKF technique was within 5% of the breeding
technique.
  The breeding ensemble generation technique is similar
in spirit to the ETKF technique in that it views analysis
perturbations as filtered forecast perturbations. Here we
have compared the performance of a simple form of the
breeding technique in which each ensemble
perturbation is rescaled by a constant factor that
ensures that, on average, forecast perturbation
magnitude is consistent with the forecast error of the
control forecast against the ETKF generation technique.
We illustrated that while breeding mode analysis
perturbation amplitude is modulated solely by dynamics,
ETKF analysis perturbation amplitude is modulated by
dynamics and the geographic distribution of
observations.  We showed that while the error variance
of a 16-member T42 CCM3 breeding ensemble was
concentrated in a single direction, the ETKF 16-
member ensemble error variance was evenly spread

amongst 15 independent, orthogonal, and uncorrelated
directions.
  Forecast errors of 250 hPa temperature were found to
be more highly correlated in the breeding mode
ensemble than in the ETKF ensemble. The ETKF
ensemble mean was found to be more accurate than
the breeding ensemble mean. Having pointed out that
the mean is a non-optimal combination of ensemble
forecasts when the control forecast is more accurate
than the ensemble members, we also showed that the
optimal combination of ETKF ensemble members for
the season was superior to the corresponding optimal
combination of the breeding ensemble members.
  Future work will compare the merits of obtaining better
observational network resolution by increasing
ensemble size against the merits of obtaining better
observational network resolution by letting the
transformation matrix T be a slowly varying function of
latitude.  This slowly varying function would be achieved
by only letting observations within a certain distance of a
grid point influence the value of T at that grid point.  We
are also interested in testing the ability of the ETKF
technique to forecast the forecast error variance.

day (a) ensemble error
correlation

(b) ensemble mean error
variance

(c) optimal combination
error variance

ETKF BRED ETKF BRED ETKF BRED
1 0.5142 0.8327 1.470 1.933 1.409 1.428
2 0.6572 0.8680 2.602 2.992 2.571 2.601
3 0.7131 0.8762 3.410 3.808 3.387 3.513
4 0.7358 0.8784 4.030 4.506 4.007 4.266
5 0.7478 0.8757 4.690 5.095 4.663 4.933

Table 1. A comparison of the ensemble forecast skill between the 8-member breeding and ETKF ensembles for the global
250hPa temperature in boreal summer of 2000. (a) averaged correlation of the ensemble forecast errors. (b) averaged error
variance of the ensemble mean forecasts. (c) averaged error variance of the optimal combination of the ensemble forecasts.
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