
J9.18

OBJECT-ORIENTED HANDLING OF NUMERICAL DATA FOR SCIENTIFIC ANALYSIS

AND VISUALIZATION  BASIC IDEA AND IMPLEMENTATION FOR RUBY

Takeshi Horinouchi and Naoki Kawanabe

Radio Science Center for Space and Atmosphere, Kyoto University

1. INTRODUCTION

Kinds and size of data an atmospheric

scientist typically deals with have been

increasing rapidly as computer power and

international data exchange/sharing grow. To

manage this situation, it would be desirable

for him or her to have software or a

programming library with which different kinds

of data can be treated efficiently in a

consolidated way. The consolidation may be

achieved by making use of the

object-oriented way to separate data and

accessors to them. We propose a framework

to realize it and implement it with the

object-oriented language Ruby.

2. FRAMEWORK FOR GRIDDED PHYSICAL

DATA

Numerical data of physical quantities that we

handle are typically gridded, whether

regularly or not. A first step to handle the data

concisely would be to combine them with their

grid values and other information such as

units to form an "object". This is the way of

organizing data that file formats such as

NetCDF and HDF4 employ to make data

contents self-descriptive. It then becomes

possible to devise abstract operations on the

data as physical quantities rather than just as

numerical arrays. An example of such

operations is to slice a multi-dimensional data

in terms of physical coordinate values. The

organization into an object would also serve

for visualization, since axes and titles can be

drawn automatically from information stored

in the object.

3. IMPACTS OF DATA-HANDLING

CONSOLIDATION

By using object-oriented languages, we can

hide internal structure of data objects from the

user and make him or her access them only

through abstract operations. The accessors

can be the same in many cases whether the

actual data resides entirely on computer

memory or are kept in a file (letting the data

object consisting of file handlers).

Self-descriptive file formats such as those

stated above can easily be adapted to this

framework, and even non-self-descriptive

formats can be conformed to it if the user

provides ancillary information needed. It

should be emphasized that distributed data

whose entity consists of multiple files can also

be adopted to this framework. The files may

possibly be distributed across network.

Since broad formats can be covered and the

accessors to data will be consolidated as

much as possible, users of the library would

naturally develop applications that can be

used easily by others. Therefore, the library is

expected to become a basis on which

data-handling applications are developed and

shared in research communities.

4. IMPLEMENTATION

To realize such data handling we have been

developing a class library for use in the

object-oriented language Ruby. Ruby is

perhaps the best object-oriented scripting

language to date and is freely available from

http://www.ruby-lang.org. Since it can be

used interactively, it is suitable for interactive

data analysis. Yet, an interactive trial and

error can be organized smoothly into a

program if needed. It is also noteworthy that

functions written in the C Language is easily

incorporated to Ruby so that existing C

libraries (or Fortran libraries via f2c) can be

utilized with small cost. Since Ruby offers

strong network support, we are envisioning to

extend our library to handle data across

network. The original distribution of Ruby,

however, does not have efficient

multi-dimensional numerical arrays or a

user-friendly scientific visualization tools

needed by the library. The companion paper

by Kawanabe et al (P1.20) presents our

development of such infrastructure.

The development of the high-level library to

handle physical data is now on a preliminary

stage. We are supporting the NetCDF file

format as the fist step and implementing

mathematical and statistical operations as

well as graphics to physical data objects

stored self-descriptively in files. We will

present its outline and demonstrate the

preliminary version in the talk.

5. FUTURE DIRECTION

We are planning the following development.

l Comprehensive support of graphics,

mathematical and statistical functions

l Array vectorization support for numerical

simulation

l Support self-descriptive file formats such

as HDF in addition to NetCDF

l Develop template forms for non- or

imperfectly self-descriptive file formats

l Distributed file support

l File access over network made similarly

to locally stored data

