
 

1. INTRODUCTION

 

A goal of ensemble forecasting is the assessment of
the predictability of a given flow. The generation of the
initial perturbations which describe an ensemble is gov-
erned by two principles: 1) the initial perturbations
should be constructed using some knowledge of the sta-
tistics of analysis errors and 2) the initial ensemble per-
turbations should share the structure of those
perturbations which amplify rapidly over the forecast
interval of interest (i.e., in those regions in which the sen-
sitivity of the forecast to initial condition uncertainty is
largest). A means of constructing ensembles is through
the use of singular vectors (SVs, also referred to as
Òoptimal perturbationsÓ), which are those perturbations
which amplify linearly most rapidly for a given norm, for a
given basic state, over a prescribed time interval. In the
construction of ensembles using SVs, the choice of the
analysis error covariance metric as a measure of initial
amplitude ensures that the SVs are constructed using
knowledge of the characteristics of the analysis error.
The rapidly growing property of SVs in addition to the
fact that they are orthogonal at the initial and final (opti-
mization) times provides that the ensemble generated
from the SVs has maximum spread at the end of the
optimization interval.

While there is evidence that there is some utility in
the use of SVs for ensemble prediction, there are limita-
tions to their efficacy. These limitations include computa-
tional cost, the validity of the assumption of linear
dynamics, and the number of members needed to con-
struct a reasonable ensemble. Calculation of SVs for
ensemble prediction is costly, as several runs of both the
linearized version of a numerical weather prediction
(NWP) model and its adjoint are required in the iterative
schemes used to solve the eigenvalue problem that

defines the SVs. The concern over whether linear
dynamics is appropriate arises when the initial perturba-
tion is of large amplitude, whether the perturbation grows
so rapidly that its amplitude is comparable to that of the
basic state, or whether processes within the model that
are described by a conditional (e.g., an Òif-thenÓ state-
ment) change the sense of the conditional - resulting in
effects that are not described by the linearization.
Finally, there is no 

 

a priori

 

 means of identifying the num-
ber of ensemble members needed in an ensemble for a
particular forecast.

While SVs may be used to identify the initial struc-
tures and locations of those perturbations that grow rap-
idly for a given measure of amplification, forecast
sensitivities allow for the identification of those regions in
which a small change to the initial condition, , of an

NWP model will have largest effect on a particular
aspect of that modelÕs forecast. A forecast sensitivity is
defined as the gradient of a response function (

 

R

 

, any
differentiable function of output of an NWP model) with
respect to that modelÕs initial condition, (e.g., the sensi-
tivity is ). The adjoint of an NWP model serves as a

tool for the efficient calculation of these sensitivities (Err-
ico 1997). The sensitivity may be used to estimate the
change in the response function, , for a specified

change in the initial condition, ,

 

, (1)

where  denotes the inner product of two vectors 

 

x

 

and 

 

y

 

. 

 

We suggest that given measures of analysis errors,
and a forecast sensitivity gradient for a specific response
function derived from a single integration of an adjoint
model, we may be able to estimate the likely ranges of
values the response function may take for a site or
regionally specific forecast. The approach to be outlined
below does not suffer from the computation burden of
the SV calculation, but concerns about the validity of lin-
ear dynamics and the requisite number of ensemble
members remain. In this presentation, we explore the
use of adjoint-derived forecast sensitivities and differ-
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ences between operational analyses to construct an
ensemble of forecasts, for specific forecast aspects. The
goal of this research is to determine whether the tech-
nique can provide forecasters with a practical, objective
method for predicting the skill of a single deterministic
forecast, assuming that the primary source of forecast
error is imperfect specification of initial conditions rather
than model error. As part of this work, we also seek to
determine objective measures of the validity of the tan-
gent linear assumption, to evaluate the dependence of
the forecast skill on characteristics of the larger scale
flow, and to determine how large an ensemble is require
to obtain a reliable estimate of bounds on the forecast.

In section 2 we present the methodology and moti-
vation for this work. An example of the output of the cal-
culations is given in section 3. A summary and plan for
further study is outlined in section 4.

 

2. MOTIVATION AND METHODOLOGY

2.1 Motivation

 

Provided that the model being used to calculate the
forecast sensitivities may be viewed as Òperfect,Ó motiva-
tion for our approach comes from the results of a number
of studies that suggest that cases of major forecast
errors may be explained by defects in the initial analyses
(e.g., Rabier et al. 1996). Because the Òtrue stateÓ of the
atmosphere is not known, and because the analyses
used to initialize operational NWP models may be
viewed as best estimates for the state of the atmosphere
at a given time, then differences between the analyses
may be viewed as plausible errors in the analyses.

At any given analysis time, comparison of analyses
within and between operational centers reveals that
there may be considerable discrepancies between the
analyses. An example of such a comparison is found in
Fig. 1 which shows differences between analyses of 650
hPa temperature from the National Center for Environ-
mental PredictionÕs (NCEPÕs) Eta and Aviation models
(Fig. 1a), and the Eta and United Kingdom Meteorologi-
cal OfficeÕs (UKMET) model (Fig. 1b). There are clearly
regions on these difference maps where discrepancies
in the analyses exceed 1K. Furthermore, the differences
in 650 hPa temperature between the Eta and Aviation
models, are smaller than the differences between the
Eta and UKMET analyses at this analysis time. 

To the extent that we may use the differences
between the analyses as representing analysis uncer-
tainty, knowledge of this initial uncertainty together with
knowledge of the forecast sensitivity may be used to
estimate changes in the response function.

 

2.2 Methodology

 

While in principle, any differentiable function of the
model forecast state could be used for this study, for
simplicity in interpretation, and of potential operational
interest, the response function chosen is the tempera-
ture averaged over the upper Midwestern United States
on the sigma surface 

 

σ

 

 = 0.85.

The procedure for constructing the ensemble fore-
casts follows:

¥ 36 hr forecast sensitivities are calculated using the
MM5 Adjoint Modeling System (Zou et al. 1997) in a
horizontal domain (identical to that shown in Fig. 1
with 48x70 gridpoints) with 10 evenly spaced sigma
levels.The adjoint model is run ÒdryÓ about a moist
basic state calculated from a forward run of the nonlin-
ear model initialized using the Eta model analysis
interpolated to the MM5 grid. The response function 

 

R

 

is also calculated for the basic state at the final time.

 

• The analysis differences,  are determined from the
differences between the Eta, Aviation, UKMET, and
Navy NOGAPS model analyses interpolated to the
MM5 grid. From these four different analyses, we may
construct 12 initial perturbations (6 positive, 6 nega-
tive).

• An 

 

estimate

 

 for the change in the response function,
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Figure 1.

 

 Differences between analyses of 650
hPa temperature in (a) NCEPÕs Eta and Aviation
models and (b) NCEP Eta and UKMET models for
1200 UTC 29 September 2001. Contour interval
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, is calculated using (1) for each of the 12 initial
analysis perturbations. Because the calculation is lin-
ear, only 6 independent (positive) perturbations are
necessary, as the change for the negative perturba-
tions is determined by multiplying the result by -1.
From this calculation, bounds on the response func-
tion may be determined from the largest  calcu-
lated.

 

• As a check of the linearity, the change in

 

 R

 

, , is
evaluated from differences in non-linear model runs
using the positive and negative perturbations. As an
example, one may compute 

(2)

 

using the perturbation derived from the Eta and Avia-

tion model analyses. This  may then be com-

pared with 

 

.

 

For sufficiently large ensemble size, and for a Ôreal-
isticÕ estimate of the initial condition uncertainty, we may
determine those periods for which the chosen response
function has enhanced or decreased predictability.

Output and verification statistics from this study are
archived and available in near-real-time at the URL:

 

http

 

:

 

//helios.aos.wisc.edu

 

. 

 

3. EXAMPLE

 

An example of the forecast bounds generated using
the forecast sensitivities is shown in Fig. 2 for 1200 UTC
28 September. From this figure, one might surmise that
the bounds on the forecast for the average temperature
over the state of Wisconsin are within  based on
the bounds established by the Aviation-UKMET analysis
difference. For this example, the verifying average tem-
perature was 279.96K - within the bounds of all the esti-

mates derived from the adjoint sensitivities.

 

4. SUMMARY AND OUTLINE OF FUTURE WORK

 

The use of adjoint based sensitivities in the con-
struction of site or regionally specific forecasts has been
proposed and the methodology of the approach has
been outlined. The approach takes advantage of uncer-
tainties in operational analyses to derive a set of initial
condition perturbations that may be used in conjunction
with adjoint-derived forecast sensitivity gradients to cal-
culate bounds on the value of a particular forecast
aspect. Compared with the cost of SV generated ensem-
bles, which require a forward run of the NWP model, fol-
lowed by multiple integrations of the adjoint and tangent-
linear versions of the NWP model, the computational
cost of generating a 

 

single

 

 adjoint-derived sensitivity
ensemble is the cost of one forward nonlinear model
integration followed by one adjoint model integration.
Furthermore, we note that the choice of response func-
tion allows for the forecast to be 

 

tailored to specific fore-
cast needs

 

 (e.g., forecasts for a particular site or region,
forecasts of severe weather indices, wind speed, aver-
age temperature, precipitation) as long as the forecast
problem can be expressed as a differentiable function of
the model output. 

In order for this approach to be practical, several
questions must first be addressed:

1) What is the minimum number of initial perturba-
tions necessary to generate a ÒusefulÓ forecast?

2) For N different analyses, there are N(N-1) initial
perturbations (including both positive and negative) that
may be generated from simply taking analysis differ-
ences. At present we have a relatively small number of
different analyses. Are there means of increasing the
ensemble size to greater than N(N-1) using only N analy-
ses?

3) What is the maximum length of time that the
assumption of linear perturbation evolution is valid?

In addition to these questions, we will also explore
the relationship between the size of the estimated fore-
cast bounds to the magnitudes of the forecast error,
amplitudes of the sensitivity gradient, and amplification
factors of the leading SV for the basic state flow.
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Figure 2.

 

 Distribution of 36 hour forecasts bounds
as derived using adjoint sensitivities and analysis
differences between the Eta, Nested Grid Model,
Aviation, and UKMET models for 1200 UTC 27 Sep-
tember 2001. Black arrow indicates response func-
tion for basic state nonlinear run, while grey arrow
indicates the verification.
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