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1. INTRODUCTION

Though ensemble forecasting has been operational
in the U.S., Europe, and Canada for nearly a decade
now, no clear consensus has yet evolved on the best
feasible method for generating initial conditions for
these ensemble forecasts. In principle, to be consistent
with the underlying theory stemming from the Liouville
equation (Ehrendorfer 1994), the samples, whether
they are drawn randomly or non-randomly, should
reflect the probability distribution of plausible analysis
states. However, analysis error statistics are highly
flow-dependent, and generating such flow-dependent
sets of initial conditions is at best computationally
very expensive. As a consequence, each of the
operational centers have embraced different approaches.
The European Centre for Medium-Range Weather
Forecasts (ECMWF) have used “singular vector”
perturbations (Molteni et al. 1996); the National
Centers for Environmental Prediction (NCEP) use a
“breeding” method (Toth and Kalnay 1993, 1997);
and at the Canadian Meteorological Centre (CMC),
a “perturbed observation” 3-dimensional variational
assimilation (3D-Var) approach is used (Houtekamer et
al. 1996). All of these methods can only approximate
generating samples from the distribution of analysis
states. In the case of ECMWF’s singular vectors, in
principle the initial norm used to measure the size and
structure of perturbations should be a flow-dependent
analysis-error covariance norm (“AEC”; more later on
this); lacking that, ECMWF uses an initial total-energy
norm. For NCEP’s breeding method, perturbations
are grown and rescaled each analysis cycle, their
rescaled size consistent with time-averaged analysis
error statistics. Hence, there is limited freedom for
them to fully reflect the flow-dependent uncertainty. The
CMC perturbed initial conditions, as shown in Hamill et
al. (2000) can potentially do a good job of reflecting
situational analysis errors, but some compromises are
made operationally to lower the computational cost at
the expense of some flow dependency.
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Understanding of the relative merits of various ap-
proaches are difficult since each forecast center uses
a different forecast model, different data assimilation
approaches, even somewhat different sets of observa-
tions. Anderson (1996, 1997) provided some compar-
isons of different approaches using the 3-dimensional
Lorenz (1963) model. Hamill et al. (2000) provided a
comparison of singular vector, bred, and perturbed ob-
servation methods in a quasi-geostrophic channel model
with O(105) degrees of freedom.

Some work has been done on understanding the
properties of perturbations that are consistent with
AECs, notably Ehrendorfer and Tribbia (1997) and
Barkmeijer et al. (1998, 1999). Ehrendorfer and
Tribbia (1997) showed that in principle, if one’s
intent is to explain forecast variance optimized for
a given lead time with as little error as possible,
optimally growing perturbations, or singular vectors
(SVs) consistent with analysis-error covariances are the
theoretically appropriate choice. However, one must
develop perturbations to maximize forecast variance for
a specific lead time, say, 48 h. Perhaps the structures
for 24 h are somewhat different, and the optimality
is only valid for a specific time, and under restrictive
assumptions of linearity and Gaussianity. Barkmeijer
et al.’s work also addressed the optimality of AEC
SV’s. In their study, they calculated the singular vectors
consistent with static, non-flow dependent analysis error
statistics and compared the accuracy of subsequent
probabilistic forecasts against those from total-energy
norm SVs (TESVs). Probabilistic forecasts from TESVs
were found to be slightly more skillful than those from
AEC SVs. The exact reasons were unclear, but certainly
one possible reason is that the AECs used in that study
were not flow dependent.

What has yet to be explored in a complex system is a
comparison of probabilistic forecast errors from random
and dynamically structured perturbations both of which
are consisent with 
ow-dependent analysis errors
statistics. We now have the tools in place to perform
this comparison. Recent improvements in computational
power have permitted the exploration of ensemble-based
data assimilation approaches which may be able to
provide not only dramatically improved analyses but
flow-dependent initial conditions for ensembles (see,
e.g., Evensen 1994, Houtekamer and Mitchell 1998,
2001, Burgers et al. 1998, Hamill et al. 2001, Whitaker
and Hamill 2001). The general idea is this: first, run
a very large ensemble-based data assimilation scheme
(here, in a perfect-model context). The analyses from
these schemes can be shown to be reliable and have flow-



dependent error statistics. We will demonstrate that by
using this ensemble, one can also determine without use
of tangent-linear and adjoint models just which initial
analysis-error structures, the AEC SVs, result in the
largest forecast errors. We will then generate forecasts
from the random and singular-vector initial conditions
and compare the accuracy of the subsequent probabilistic
forecasts. This preprint will primarily document the
experimental design; results will be presented at the
conference.

Here, we will start with a brief description of the
ensemble data assimilation methodology (Section 2),
the methodology for generating flow-dependent AEC
SVs (Section 3), the details of our experiment and test
methodology (Section 4), and results (Section 5).

2. ENSEMBLE-BASED DATA
ASSIMILATION METHODOLOGY

The assimilation scheme used here has been dubbed
the ensemble square-root filter, or “EnSRF.” A more
complete description of it and the rationale for its use is
provided in Whitaker and Hamill (2001). The underlying
notion is to run an ensemble of parallel forecast and data
assimilation cycles, ensuring that the ensemble mean
analysis and the analysis-error covariance as estimated
by the ensemble is consistent with that predicted by
Kalman-filter theory.

Following the notation of Ide et al. (1997), let
xb be a background model forecast, yo be a set of
observations, H be an operator that converts the model
state to the observation space, Pb be the background-
error covariance matrix, and R be the observational-
error covariance matrix. The minimum error variance
estimate of the analyzed state xa is then given by the
traditional Kalman filter update equation (Lorenc 1986),

xa = xb + K(yo � Hxb); (1)

where
K = PbHT(HPbHT + R)�1: (2)

The expected analysis-error covariance is

Pa = (I � KH)Pb: (3)

In the generic ensemble Kalman filter (EnKF; Evensen
1994, Houtekamer and Mitchell 1998, Burgers et al.
1998, Hamill et al. 2001), Pb is approximated using the
sample covariance from an ensemble of model forecasts;
Pb = hx0bx0bT

i, where h�i denotes the expected value,
computed using the ensemble. In actuality, there is no
need to compute and store the full matrix Pb. Instead,
matrices PbHT and HPbHT are estimated directly using
the ensemble (Evensen 1994, Houtekamer and Mitchell
1998).

The update equations can be re-expressed in
separate equations for the ensemble mean (denoted by

an overbar) and a deviation from the mean (denoted by
a prime):

xa = xb + K(yo � Hxb); (4)

x0a = (I � eKH)x0b: (5)

Here, K is the traditional Kalman gain given by Eq. (2),
and eK is the gain used to update deviations from the
ensemble mean.

When sequentially processing independent observa-
tions, K, eK; HPb and PbHT are all vectors with the same
length as the model state vector, and HPbHT is a scalar.
Thus, as first noted by Potter (1964), when observations
are processed one at a time,

eK =

 
1 +

r
R

HPbHT + R

!
�1

K: (6)

Here, HPbHT and R are scalars representing the
background and observational error variance at the
observation location. The quantity multiplying K in
Eq. (11) is a scalar between 0 and 1. This means that, in
order to obtain the desired analysis-error covariance, one
uses a modified Kalman gain to update deviations from
the ensemble mean that is reduced in magnitude relative
to the traditional Kalman gain. Thus, deviations from
the mean are reduced less in the analysis using eK than
they would be using K. In the EnKF, the excess variance
reduction caused by using K to update deviations from
the mean is compensated for by the introduction of
noise to the observations. In the EnSRF, the mean and
departures from the mean are updated independently
according to Eqs. (4) and (5). If observations are
processed one at a time, the EnSRF requires no more
computation than the traditional EnKF with perturbed
observations.

The general analysis methodology is thus as follows:
generate a set of perturbed initial conditions. Make
n forecasts forward to the next data assimilation time.
Perform n+ 1 parallel data assimilation cycles, updating
the mean state using (4) and the n perturbations using
(5) and (6). In each data assimilation cycle, observations
are assimilated serially.

Some additional algorithmic complexity will be
used in order to model background-error covariances
more effectively. These include the inflation and local-
ization of covariances. Deviations of perturbations of
each member from the ensemble mean are inflated by
a small amount before the start of each data assimila-
tion cycle in order to ensure that covariances are not
systematically underestimated, which can cause a prob-
lem known as filter divergence, whereby the influence
of new observations is ignored. Covariance localization
multiplies the ensemble estimate of covariances with an
isotropic function which monotonically decreases with
greater distance from the observation. See Hamill et
al. (2001) for an in-depth rationale and mathematical
formalism.



3. ANALYSIS-ERROR COVARIANCE
SINGULAR VECTORS USING
ENSEMBLES

Let Xa = (n� 1)�1=2(xa
1 � xa; : : : ; xa

n � xa), where
the ith column vector represents the ith member xa

i’s
analyzed model state deviation from the ensemble mean
analysis xa. We assume that the ensemble samples
analysis errors correctly, so that

lim
n!1

XaXa
T = Pa (7)

We also assume linear dynamics. Let M denote the
tangent-linear operator of the forecast model. Under
assumptions of linearity we can construct an ensemble
of forecast deviations from the ensemble mean according
to

Xf = (n� 1)1=2
�
xf

1 � xf; : : : ; xf
n � xf�

' (n� 1)1=2
�
M(xa

1 � xa); : : : ;M(xa
n � xa)

�
' MXa:

So
lim
n!1

XfXf
T = MXaXT

aMT (8)

With the same generality, Xf can be estimated from an
ensemble of nonlinear forecasts:

Xf ' (n� 1)1=2
�
M(xa

1) � M(xa); : : : ;M(xa
n) � M(xa)

�
where M(xa) = n�1Pn

i=1 M(xa
i).

Let us denote an energy inner product with norm
jxj = xTSx = (Dx)T(Dx), where D = S1=2, and D
is symmetric, i.e., D = DT. To find analysis-error
covariance singular vectors, we would like to maximize
forecast deviations, measured in a total-energy norm,
subject to the constraint that the initial perturbations are
sized to be consistent with the analysis-error statistics,
i.e.,

max
XT
fSXf

XT
aPa�1XT

a

or

max
XT
aMTSMXa

XT
aPa�1Xa

;

which, by Rayleigh’s principle, is equivalent to the
eigenvalue problem

MTSMu = Pa�1u� (9)

where u denotes the eigenvector and � the associated
eigenvalue. Multiplying both sides by DMPa and
substituting D2 for S, this yields

DMPaMTD2Mu = DMu� (10)

Letting d = DMu, and assuming

lim
n!1

(DXf )(DXf )T = DPfD

(10) then becomes

DMPaMTDd = DPfDd = DXf (DXf )Td = d� (11)

an equivalent eigenvalue problem for the forecasts. Here,
d’s are the eigenvectors of the forecast covariance matrix
in a norm based on S = D2. Now, let d = DXf�, i.e.,
� is an n-dimensional vector with elements representing
the weight to be given to each column of DXf . Then,
substituting this definition, using the identity (DXf )T =
XT
fDT and eliminating a DXf from each side, one can

show that an equivalent eigenvalue problem to (11) is

XT
fDTDXf� = ��

for � 6= 0. Next, assuming Xf = MXa and S = DTD,

XT
aMTSMXa� = ��:

Multiplying both sides by Xaand using (1), for an infinite
ensemble

PaMTSMXa� = Xa��: (12)

Assuming u = Xa�, this is equivalent to (9). In
plainer terms, what (12) indicates is that when one has
determined the eigenvectors of the forecasts using the
ensemble, the same linear combination � of ensemble
forecast members that yields a given forecast eigenvector
can be multiplied by the analysis members to determine
the associated analysis structure that gave rise to this
forecast eigenvector.

Terminology may be confusing when different
initial and final norms are used. The linear combination
� of ensemble forecast deviations will be what we refer to
as the “evolved” or “forecast” singular vectors. The same
linear combination � of analysis state deviations will be
referred to as the “initial time” singular vectors. Were
the norms consistent, the maximum growth rate would
be associated with the leading evolved singular vector.
As will be shown in section 5, this is not necessarily so
with the AEC SVs.

4. EXPERIMENTAL DESIGN

Aspects of our experimental design may change
before the conference; we describe the setup for
preliminary tests conducted so far.

We use a Held/Suarez dry, primitive equation
global circulation model (Lee and Held 1993) under
assumptions of no model error. The model is T31L15
resolution.

A 100-member EnSRF data assimilation system
is used. Covariances are localized using a Schur



Figure 1. Locations of synthetic rawinsonde profiles.

product of ensemble covariances with a �Gaussian-
shaped function with local support, reaching a zero value
at 5000 km distance from the observation. Before each
data assimilation cycle, covariances are inflated by 2 %.

Two types of observations are assimilated; the
first are synthetic rawinsondes (raobs), with a surface
pressure observation and winds and temperature at 5
vertical levels, approximately 900, 700, 500, 300, and
100 hPa. Observations have error characteristics derived
from Parrish and Derber (1992), and observation errors
are assumed uncorrelated in the vertical. Observation
locations are shown in Fig. 1; they were chosen to
provide a very rough analogue to the operational raob
network, with more observations over the land than the
ocean. Another set of observations, roughly analogous
to upper cloud-drift winds, are also assimilated. These
observations are randomly located in longitude, are
random normally distributed about the equator with a
standard deviation of 20 Æ latitude, and are randomly
placed in the vertical between 400 and 200 hPa. Drift
error statistics are again consistent with the 6.1 ms�1

standard deviation cited in Parrish and Derber (1992).
Analysis errors are shown in Fig. 2.

From the cycled analyses, we periodically make an
ensemble of 48-h forecasts. AEC SVs are computed
using Northern Hemisphere ensemble forecast data north
of 20 Æ. The eigenvalues and eigenvectors of the
forecast-error covariance are calculated and ordered.
To determine the associated initial-time structure, the
linear combination of ensemble forecast members that
produced a given eigenvector is used, but applied to the
initial-time ensemble. Under linearity assumptions, this
should produce the correct initial-time structure.

5. RESULTS

A more complete set of results will be presented at
the conference. Here we provide a preliminary glimpse
at the properties of AEC SVs in this model.

Analysis-error statistics show that, even with the
inclusion of synthetic cloud-drift winds in the tropics, the
typical magnitudes of analysis errors are still dominated
by wind errors in the tropical upper troposphere (Fig. 2).

By generating singular vectors only using data north of
20 Æ, we are able to generate singular vectors that are not
dominated by the low-latitude errors.

Figure 3 shows the leading forecast eigenvector and
the associated initial-time structure that produced it on
day 70. Several characteristics are notable; first, the
structure is quite localized relative to the 3D-Var Hessian
singular vectors cited in Barkmeijer et al. (1998, 1999).
We have not yet computed statistics for a wide number
of cases and so are unable to determine the pressure level
where initial amplitudes are the largest.

At the time of the conference, we expect to have
more description of the characteristics of the analysis
error, the typical structures of the AEC SVs, and
information on how skillful are probabilistic forecasts
generated from random samples or from AEC SVs.

One interesting feature is that the amplification
factors do not decrease monotonically as the singular
vector number increases. For example, Fig. 4 plots
the amplification factors of the singular vectors, the
size of the perturbation at the final time divided by
the size of the perturbation at the initial time (both
measured here in a total-energy norm). Recall that
the singular vectors are ordered in terms of the amount

Figure 2. Energy errors for the analysis (total, wind, and temperature
component) as a function of height. (a) 27.5Æ N to 27.5Æ S, and (b)
north of 37.5Æ N latitude.



of forecast-error variance that they explain. Figure 4
illustrates that the amplification of the second singular
vector is smaller than the third, fourth, and fifth singular
vectors. This does not indicate a problem with the
methodology; rather, it highlights that there are two
factors contributing to the final forecast error structure;
forecast errors can grow to be large either from the initial
errors being large and/or a large growth rate during the
forecast. Apparently, singular vector 2 had a large initial
amplitude, compensating for its smaller growth rate.
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