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1. INTRODUCTION

Verification is a critical component of the
development and use of forecasting systems. Ide-
ally, verification should play a role in monitoring the
quality of forecasts, provide feedback to develop-
ers and forecasters to help improve forecasts, and
provide meaningful information to forecast users to
apply in their decision-making processes. In addi-
tion, as noted by Mahoney et al. (2002) forecast
verification can help to identify differences among
forecasts. Finally, because forecast quality is inti-
mately related to forecast value, albeit through
sometimes complex relationships, verification has
an important role to play in assessments of the
value of particular types of forecasts (Murphy
1993).

Recently, verification of convective and
quantitative precipitation forecasts has received a
great deal of attention. For example, a recent (May
2001) World Meteorological Organization, World
Weather Research Program workshop focused on
the verification of quantitative precipitation fore-
casts (see http://www.chmi.cz/meteo/ov/wmo/).
Unfortunately, traditional approaches for the verifi-
cation of convective forecasts are inadequate, for a
number of reasons. These methods generally rely
on overlaying a forecast grid on an observation grid
and computing standard statistics based on the
2x2 verification table. A major flaw with this type of
verification is that it is insensitive to the size of the
forecast error in terms of intensity, areal coverage,
location, and timing. For purposes of this paper, we
will not directly address an additional important
issue, concerning characteristics of the observa-
tions used for these types of verification analyses.
These observations generally are based on rain
gages (which poorly sample the regions of interest)
or radar observations (which provide an indirect
measure of the phenomena of interest). Finally,
spatial and temporal scale issues are of critical
importance for precipitation/convective forecasts,
and can have especially large impacts on verifica-
tion results based on this simple approach.

This paper reviews some of the issues men-
tioned above and some alternative approaches for
verification of convective forecasts. Further back-

ground is provided in Section 2, with a discussion
of specific verification issues in Section 3. Some
alternative approaches are described in Section 4,
with an example of a simple diagnostic approach
presented in Section 5. Future work in this area is
considered in Section 6.

2. BACKGROUND

Two general types of convective forecasts
are of particular interest here. These could be clas-
sified as “area” forecasts and “gridded” forecasts.
In general, area forecasts include human-gener-
ated “outlook” or warning areas. Gridded forecasts
typically are model- or algorithm-generated. Exam-
ples of human-generated forecasts are convective
outlooks produced by the NWS’s Storm Prediction
Center (SPC); the Collaborative Convective Fore-
cast Product (CCFP), which is a 2-to-6-hour fore-
cast of convection expected to impact air traffic,
produced by the NWS’s Aviation Weather Center
(AWC) in collaboration with airline and other mete-
orologists (Phaneuf and Nestoros 1999); and con-
vective SIGMETs, also produced by AWC
forecasters. Gridded forecasts include national
scale forecasts, such as the National Convective
Weather Forecast (NCWF), which extrapolates the
position of detected convective regions; the output
of mesoscale convective forecasting systems [e.g.,
the National Severe Storms Laboratory's Warning
Decision Support System (WDSS)], or the output
of numerical weather prediction systems such as
the Rapid Update Cycle (RUC).

As noted in the previous section, standard
approaches for verification of convective forecasts
of these types are based on simple grid overlays.
Note that since the observations commonly are
gridded, the area-type forecasts generally are also
mapped to a grid. From these overlays, counts of
forecast/observation (Yes/No) pairs can be com-
puted, to complete the standard 2x2 verification
contingency table. The counts in this table can be
used to compute a variety of verification measures
and skill scores, such as the Probability of Detec-
tion (POD), False Alarm Ratio (FAR), Critical Suc-
cess Index (CSI), and Bias (e.g., Doswell et al.
1990; Stanski et al. 1989; Wilks 1995).

Some of the issues that arise with use of this
approach are (a) it is non-diagnostic; (b) it is insen-
sitive to the size of location and timing errors; (c) it
is highly sensitive to scaling of observations and
forecasts; and (d) the statistics computed have
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some inherent limitations which cloud their inter-
pretation. In addition, characteristics of the obser-
vations are of critical importance.

3. SOME VERIFICATION ISSUES FOR
CONVECTIVE FORECASTS

3.1 Diagnostic verification
The value of utilizing diagnostic verification

approaches has been demonstrated in numerous
recent studies (e.g., Brooks and Doswell 1996;
Murphy et al. 1989). Diagnostic approaches are
based on the principle that verification should help
lead to improvements in forecasts and should pro-
vide information that is useful to decision makers.
For example, verification results should be able to
help forecasters identify systematic errors or other
factors leading to poor forecasts, or they should
lead forecast developers to identify particular prob-
lems with a forecasting system.

One important aspect of diagnostic verifica-
tion is the desirability of examining a variety of
measures, to evaluate several attributes of forecast
performance. This aspect clearly is achievable with
statistics based on the 2x2 table. However, many
of the measures associated with the 2x2 table
(e.g., POD, FAR) are difficult for forecasters and
developers to translate into information regarding
needed improvements. Moreover, single measures
(e.g., CSI) frequently are relied upon in practice,

both for simplicity and because these measures
have historical precedence.

3.2 Sensitivity to timing and location errors
Another unfortunate characteristic of the

standard verification approach for convective fore-
casts is illustrated in Figure 1. This figure shows
four examples of forecast/observation pairs, with
the forecasts and observations represented as
areas. For a forecast user, the four cases clearly
demonstrate four different types or levels of good-
ness: (a) appears to be a fairly good forecast, just
offset somewhat to the right; (b) is a poorer fore-
cast since the location error is much larger than for
(a); (c) is a case where the forecast area is much
too large and is offset to the right; (d) shows a situ-
ation where the forecast is both offset and has the
wrong shape. Of the four examples, it appears that
case (a) is the “best”. Given the perceived differ-
ences in performance, it is somewhat dismaying to
note that all four examples have identical basic ver-
ification statistics: POD=0, FAR=1, CSI=0. Thus,
the approach is insensitive to differences in loca-
tion and shape errors. Similar insensitivity could be
shown to be associated with timing errors.

3.3 Scaling sensitivity
Scaling issues arise in determining how to

match forecasts to observations, as was recently
discussed by Tustison et al. (2001). In addition,
scaling issues are related to the way forecasts and
observations are defined and depicted. Thus, they
are related to both the forecasts and the observa-
tions, as well as their combination. When verifica-
tion statistics are based on the 2x2 verification
table, the scaling choices can have huge impacts
on the values computed.

Figure 2 and Table 1 illustrate some of these
impacts. The example shown in Figure 2 is for veri-
fication of 1-h CCFP forecasts issued at 1500 UTC
on 18 July 1999. The observations used to verify
the forecasts are based on the National Convective
Weather Detection (NCWD), which combines radar
and lightning observations on a 4-km scale (Muel-
ler et al. 1999). In particular, a threshold of verti-
cally integrated liquid of 3.5 kg m-2 and/or 3-5
lightning strikes within 10 minutes are used to
define a 4-km Yes observation. Three different
scales of observations are shown in the figure: in
(a), the observations are presented on their
“native” 4-km grid; in (b) they are mapped to a 20-
km grid (i.e., assigning a Yes observation to a 20-
km area if at least one of the 4-km areas embed-
ded in it is a Yes); and in (c) the observations are
mapped in the same way to a 40-km grid. It is evi-
dent that the observations, which are hardly visible
in Figure 1a, cover much larger areas when the
observation grid scale is increased to 40 km (Fig-
ure 2c).

FIGURE 1. Simple example of problems with standard “object-
oriented” verification approaches applied to convective

forecasts. For each example, the “O” shape represents an
observed region; each “F” shape represents a forecast region.

In all cases POD=0, FAR=1, CSI=0.
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Table 1 shows how these grid differences
impact the verification statistics for this case. Not
surprisingly, POD, FAR, and Bias decrease, and
CSI increases as the grid spacing increases. Over-
all, the changes in the statistics are quite large,
simply due to changes in the grid spacing. In fact,
the change in CSI (which is related to the
increased relative frequency of Yes observations;
see Mason 1989) is larger than might be expected
to occur with an actual improvement in the fore-
casts.

This example raises the question, What is
the “correct” grid spacing? Should it be consistent
with the granularity of the forecasts? Or the obser-
vations? This issue becomes particularly critical
when two different types of forecasts are being
compared, such as when a new forecasting system
that produces automated, gridded forecasts is
being compared to the operational standard, which
may be a human-generated areal forecast limited
to much less granularity (e.g., Mahoney et al.
2002). These issues are much more critical when
the verification is based on the 2x2 verification
table than when a more diagnostic approach is
applied, as is discussed in Sections 4 and 5.

3.4 Statistical measures
It is well known that the measures computed

from the 2x2 verification table have some undesir-
able properties, such as a lack of equitability (e.g.,
Marzban 1998). Moreover, some of the measures
are quite dependent on the climatological probabil-
ity and/or other measures. For example, FAR and
CSI are strongly dependent on the sample climato-
logical probability (Brown and Young 2000; Mason
1989). These characteristics may in some cases
lead to misinterpretation of results (e.g., when com-
paring results for cases with different climatological
probabilities). While these aspects of the verifica-
tion statistics are pervasive (i.e., they impact all
verification analyses based on the 2x2 table, not
just the convective forecast verification problem),
they represent another concern, in addition to
those just mentioned, that must be kept in mind
when verifying convective forecasts using standard
approaches.

TABLE 1. Verification statistics for CCFP, 1-h forecast valid
at 1600 UTC on 18 July 1999, with different grid sizes

applied to the observations.

Observation
Grid Size

(km) POD FAR CSI Bias

4 0.44 0.96 0.04 10.38

20 0.39 0.84 0.12 2.51

40 0.35 0.71 0.19 0.12

FIGURE 2. Verification maps for 1-h
CCFP valid at 1600 UTC on 18 July 1999. Dark shape outlines
are the CCFP areas; dark shaded areas are the observations.

Three levels of scaling of the observations are shown: (a) 4
km; (b) 20 km; and (c) 40 km.

(a)

(b)

(c)



4. SOME ALTERNATIVE APPROACHES

The previous section has outlined a variety
of difficulties associated with standard approaches
for verification of convective forecasts. These prob-
lems include the non-diagnostic nature of the
approach and the difficulty of interpreting some of
the measures; the insensitivity of the results to the
sizes of the errors; and scaling issues. Fortunately,
a number of efforts are already underway toward
improving verification approaches for convective
and quantitative precipitation forecasts, and for
coping with some of the issues mentioned in the
previous section. These approaches specifically
attempt to evaluate errors in location, intensity, and
sometimes the shape of convective or precipitation
areas.

Hoffman et al, (1995) developed an
approach of interest for application to the output of
numerical weather prediction models, with respect
to modeled features (e.g., low pressure systems).
In this approach, forecast errors are decomposed
into errors related to the location, shape, and size
of the “objects”.

Ebert and McBride (2000) have extended
some of these ideas to verification of precipitation
field forecasts. In particular, contiguous rain areas
are defined and the root mean squared error
(RMSE) of the forecast is decomposed into various
sources, including location and intensity errors. In
both the Hoffman et al. and Ebert and McBride
approaches, the optimal match between forecasts
and observations is determined by moving the
forecast field around in a systematic manner.

Other approaches associated with the obser-
vations also may be beneficial. For example,
Briggs and Levine (1997) suggest the use of wave-
let transform approaches, which would separate
out the less predictable parts of the observation
field prior to forecast verification. Another approach
involves definition of “practically perfect” forecasts,
based on observations, as a standard of compari-
son for the actual forecasts. Brooks et al. (1998)
demonstrate the use of kernel density estimation
approaches for this purpose, with application to the
SPC’s convective outlooks.

The methods outlined here do not com-
pletely solve all of the problems that have been
identified. However, they do provide a good initial
step in that direction. In addition, they should lead,
with further development and testing, to
approaches that are more robust and less
impacted, for example, by questions of scale and
other issues.

5. AN EXAMPLE

Some of the ideas presented in the previous
section have recently been applied in the develop-

ment of a simple diagnostic verification approach
for the CCFP. This approach involves systemati-
cally moving and rotating the CCFP shapes until an
optimal match is achieved with the observations.

Figure 3 shows an example of the applica-
tion of this approach to a particular case. This
example is based on a very simple initial imple-
mentation of the approach, and does not incorpo-
rate many attributes that we hope to include in the
future. In particular, each CCFP shape was moved
individually (but objectively) to identify an optimal
match with NCWD observations in its local region.
The forecast objects were only allowed to translate
and to rotate; they were not allowed to change in
shape or size.

The original three CCFP shapes for this case
are shown in Figure 3a, along with the verifying
observations on a 40-km scale. Figure 3b shows
the same shapes after translation and rotation.
Impacts of the approach are shown in Table 2,
which presents the overall verification statistics
associated with the two plots (for all three forecast
areas together). Table 3 shows the optimal transla-
tions and rotations that were applied to the CCFP
shapes.

FIGURE 3. Six-hour CCFP forecast, valid at 1900 UTC on
21 June 2000: (a) original forecast areas; (b) optimally

translated and rotated shapes. Observations, on a 40-km
scale are show in gray.

(a)

(b)
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The statistics in Table 2 indicate that the
translated and rotated shapes match the observa-
tions much more closely than the original shapes.
In particular, POD is nearly doubled, FAR is about
two-thirds as large, and the CSI is tripled. The Bias
(the ratio of the forecasted area to the observed
area) is unchanged, since the sizes of the forecast
shapes were not altered. The statistics in Table 3
indicate that the optimal shapes involved a transla-
tion of 200 to 280 km. The optimal rotation required
to achieve the “best” statistics was quite small for
shapes 1 and 3, whereas a large rotation was
applied to shape 2. These results provide an indi-
cation of the sensitivity of standard verification sta-
tistics to relatively small location and orientation
errors. In addition, the diagnostic information that is
provided clearly delineates the sizes of the true
errors in the forecasts.

Examining the shapes in Figure 3b suggests
that the forecasts could easily be improved further.
For example, forecast shape 3 would provide a
better indication of the convection along the frontal
region if it extended further along the line to the
southwest. Hence, an additional evaluation would
consider changes in the shape and/or size of fore-
cast areas that are needed to improve the quality
of the forecasts. A hierarchical evaluation
approach is envisioned, starting with evaluation of
translation and rotation errors, and proceeding to
evaluation of size, shape, and intensity errors. Tim-
ing errors could be considered in a similar manner.
Hence, this simple approach could easily be
enhanced and improved a great deal. This proof-
of-concept suggests that such enhancements are
worth pursuing.

6. CONCLUSIONS AND FUTURE WORK

This paper has examined some of the prob-
lems associated with current methods used to ver-
ify convective weather forecasts. In addition, a few
approaches for coping with some of these prob-
lems have been described.

In the future, we intend to test and extend
some of the methods described in Sections 4 and
5, for several different types of convective and
quantitative precipitation forecasts. For example,
the approach described in Section 5 will be
enhanced to allow changes in the sizes of forecast
shapes and to limit the rotation of shapes to rea-
sonable values. In addition, more sophisticated
optimization and search routines will be imple-
mented to facilitate expanded use of this approach.

Once more appropriate methods have been
developed, it will be possible to cope more directly
with issues of scale. For example, it will be possi-
ble to examine and compare the predictability of
convective rainfall as a function of scale, which has
commonly been illustrated schematically as in Fig-
ure 4. Current standard verification methods limit
our ability to quantify diagrams like this, but we
anticipate being able to do so with the advent of
enhanced verification approaches. Moreover, the
verification results associated with these
approaches will provide much more meaningful
representation and understanding of particular
forecast errors.

TABLE 2. Verification statistics for example case shown in
Figure 3.

Shapes POD FAR CSI Bias

Original 0.26 0.86 0.08 1.1

Translated 0.42 0.63 0.24 1.1

TABLE 3. Translation and rotation statistics for example case
shown in Figure 3.

Shape Translation Rotation

1 218 km 9°

2 279 km 135°

3 249 km -8°

FIGURE 4. Schematic diagram illustrating the idealized
relationship between forecast accuracy and temporal scale,

based on similar diagrams by Browning et al. (1980), Doswell
(1986), Austin et al. (1987), and Wilson et al. (1998)
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