
12.11 A JAVA-BASED METEOROLOGICAL WORKSTATION

Hans-Joachim Koppert 1

Deutscher Wetterdienst, Offenbach, Germany

1 Corresponding author address: Hans-Joachim Koppert, Deutscher Wetterdienst, Kaiserleistr. 42, 63067
Offenbach, Germany; email: Hans-Joachim.Koppert@dwd.de

1. INTRODUCTION

The Deutsche Wetterdienst (DWD) develops
meteorological workstation systems to support
forecast operations at DWD’s central and regional
forecasting offices. There are 3 different systems
assisting guidance and warning operations (Kusch,
Koppert, and Pogoda, 1994), interactive chart
production and 3D visualization (Koppert and
Schröder, 1997). Users are still happy with the
current systems, but they became hard to maintain
and upgrade. Furthermore they lack requested
features like GIS support, advanced analysis
functionality, and the seamless integration of 3D
visualization and interactive chart modification into
one single application.

In 1999 a clear decision was made to replace
these aging systems and to move away from
dedicated hard- and software environments. The
new meteorological workstation project is at the
time of writing a joint effort of DWD, MeteoSwiss,
and the German Military Geophysical Office. It was
decided to develop a new portable system
architecture on the basis of the JAVA programming
environment.

2. RATIONALE FOR USING JAVA

The current operational workstation systems
were built with C, Motif, X11 and OpenGL on the
SGI Irix platform. This combination allowed us to
deliver very good performance to the user.
However, this kind of approach wasn’t very portable
and we were tied to a single vendor. Porting it to
Linux was possible with reasonable effort, but
moving to Microsoft Windows would have been too
costly.

The new software should not only replace and
extend the old one, it should also provide us with
the possibility to configure different types of
applications, ranging from simple radar displays to
full featured meteorological workstations. This also
means that we are taking different categories of
customers into account. We’ll have those with
Microsoft Windows based PCs and those with Unix
workstations.

Java was chosen as the computing platform,
since it promised to meet our requirements,
especially the independence from the operating

system and the underlying hardware. The
performance has been greatly improved from the
early days by new compiler technologies and
optimized packages. Within this project it was
shown, that even in numerical intensive applications
Java can outperform C++. Furthermore Java offers
APIs that especially support performant platform
independent visualization, like Java2D, Java3D,
and Java Advanced Imaging. Its rich set of built-in
libraries supports faster implementation time.

Java has already shown its potential in several
projects like the VisAD library for building interactive
and collaborative visualizations (Hibbard et al.,
1999) and FX-Net, the internet client interface to
AWIPS (Madine and Wang, 1999). At DWD we
have built a prototype meteorological workstation
(Koppert et al., 1999) in Java to evaluate the
usefulness of Java for this kind of application. Our
experiences with this prototype convinced us to
start this project.

3. DESIGN GOALS

After collecting, structuring, and prioritizing
user requests, the most important requirements
have been derived:

• Integrated 2D and 3D visualization (point
data incl. surface obs., temps, lightning
data; gridded data; satellite and radar
imagery; geographical data; bulletins; etc.)

• Interactive and batch chart production
• Data decoding and management
• Client with multiple windows, data layers,

animation, analysis functionality/NWP-
model monitoring

• Areas of operation: Guidance, warning /
consulting, research, climatology, reports,
commercial and private customers

The software architecture has to be
• Clear, open and expandable
• Scalable and fault tolerant
• Portable across hardware or operating

systems

There are two important design issues: The
ability to easily integrate new application layers and
to interface with a variety of data sources, like local
files, flat file systems or relational databases

4. SOFTWARE ARCHITECTURE

 Figure 1 shows the view on the 3 tiers of the
new meteorological workstation, called NinJo.
Clients can be fat clients or thin clients. Fat clients
will be mainly deployed in operational weather
forecasting whereas thin clients can serve DWD’s
staff or external customers.

The server tier provides several server
types. There will be an application server to serve
thin clients, a batch production which is more or
less a headless fat client, and the servers
themselves that offer data and computing services.

NinJo
Client

NinJo
Web-Client

Web-Browser

Batch-
Production

MAP
Server

NinJo
Web-Server

Application-Server

HTTPTCP/IP

NinJo
File-System

ClientTier

Server Tier

External Systems

NinJo
Server

IIOP

IIOP

IIOP

MAP
File-System

RDBMS

M
IR

A
K

E
L

G
eo

-D
B

D
at

ab
as

e

C
u

st
o

m
er

 M
an

.

D
is

tr
ib

u
ti

o
n

 /

 D
ec

o
d

in
g

IIOPIIOP JDBC

B
at

ch
-

C
o

n
tr

o
l/C

on
fig

 Figure 1: The NinJo architecture

Configurations are stored as XML.
Examples of configurations are the clients
functionality (i.e. which data layers) , bookmarked
workspace settings or a batch product description.

4.1 Client

Differently configurable clients are built on
a layer framework , where each layer is responsible
for one kind of data, e.g. observations, satellite
imagery, or gridded data. Each layer can process
events and holds its own data. Each layer uses the
Model View Controller (MVC) design pattern. A
window is made up of several layers, therefore the
whole client consists in a hierarchy of MVC triplets.

There is one main window and several
secondary windows holding sounding displays,
meteograms, text editors etc. The main window
(figure 2) looks like the WFO-Advanced
Workstation (MacDonald and Wakefiled, 1996).
After some interations with our users, this type of
window configuration was accepted as the best
compromise between static windows like DWD’s old
legacy software MAP and extensive multi window
systems.

4.2 Server

One can see from figure 1 that there are
several ways of storing and accessing data. Data

that has to be accessed regularly is stored in flat
files on servers at the regional offices, while data
that needs only to be addressed sometimes, like
climatological or out of area GIS data, will be stored
in a RDBMS in DWD’s main office.

 Figure 2: A prototype NinJo GUI

After intensive benchmarking we have
chosen CORBA over RMI as middleware. There
was neither a significant difference in performance
nor in complexity. Therefore CORBA’s ability to
easily interface with legacy software or additional
services, like transactions for secure data storage
(e.g. interactively modified model output), turned
the balance.

The NinJo data server consists of several
data severs of different types. Since we use Corba,
it’s better to say that there are several CORBA
services distributed on a number of server
computers. One data server hosts a set of data
types with common storage and access
characteristics. Examples are point data server
(storing BUFR encoded data), gridded data server
(storing GRIB encoded data), raster data server
(storing unprocessed satellite and radar imagery).
All data servers follow one generic design to
facilitate the implementation of new data types.

Client side application development is
supported by an abstraction layer that makes the
client independent from the middleware, it also
facilitates load balancing and fail over. On the
server side the same layer (“Access layer” in figure
3) abstracts from storage types and allows to
transparently access flat files or data bases.

4.3 Visualization

The visualization part of NinJo consists of
3 layers: Graphics Object Factory (GOF), Generic
Visualization Library and Meteorological
Visualization Library.
 The GOF abstracts from the actual
graphics API (Java2D, Java3D, OpenGL, SVG,
Postscript). It handles the geometry and the

appearance of graphical objects. The GOF is a
simplified version of the Java3D scenegraph
adopted to the needs of meteorological
visualization. Java3D will be used for fast, hardware
accelerated 3D (possibly also for 2D rendering),
Java2D for diagrams, web graphics, and batch
production. Postscript output will be implemented
using a Graphics2D-object and the Java Print
Service API or by writing a custom driver that
traverses the GOF-scenegraph directly.

Swing

Java 2D Java 3D

ORBconfig

PAC-
Control

Access Layer

Meteorological Visualization

 Visualization Library(vislib)

Graphics Object Factory (GOF)

Figure 3: The NinJo client architecture (->: uses)

The generic Visualization Library provides high
level graphical tools. Meteorological applications
assemble depictions with basic objects like wind
barbs, cloud cover symbols, contour lines, and iso-
surfaces, only to name a few.

5. THE NINJO PROJECT

 The NinJo project is a joint effort of several
institutes. It bundles resources that were dedicated
to several workstation systems before, because it
will offer a superset of the old systems
functionalities.
 The project started late 1999, the meteorological
specification was presented in August 2000, the
decision on the technological design was made in
may 2001. We expect an evolving prototype that
implements all basic functionalities on the server
and the client side in spring 2002. After yearly
cycles of design, implementation and test we expect
rollout mid 2004.

6. REFERENCES

Kusch W., H.-J. Koppert, and M. Pogoda, 1994:
The Meteorological Application and Presentation
System (MAP) of Deutscher Wetterdienst (DWD),
Tenth International Conference on Interactive
Information an Processing Systems for
Meteorology, Oceanography, and Hydrology,
Nashville, Amer. Meteor. Soc.,200-203

Koppert, H.-J., Schröder, F, 1997: 3D-Visualization
at DWD, Sixth Workshop on Operational
Meteorological Systems, Reading, UK, ECMWF
Workshop Proceedings

MacDonald, A.E and J.S. Wakefiled, 1996: WFO-
Advanced: An AWIPS-like prototype forecaster
workstation. Twelfth International Conference on
Interactive Information an Processing Systems for
Meteorology, Oceanography, and Hydrology,
Atlanta GA, Amer. Meteor. Soc., 190-193

Hibbard, W.S., S. Emerson, C. Rueden, T Rink, D.
Glowacki, N. Rasmussen, D. Fulker and
J.Anderson, 1999: Collaborative visualization and
computation in the earth sciences using VisAD,
Fifteenth International Conference on Interactive
Information an Processing Systems for
Meteorology, Oceanography, and Hydrology,
Dallas, TX Amer. Meteor. Soc., 478-480

Madine S., N. Wang, 1999: Delivery of
meteorological products to an internet client
workstation. Fifteenth International Conference on
Interactive Information an Processing Systems for
Meteorology, Oceanography, and Hydrology,
Dallas, TX, Amer. Meteor. Soc., 356-359

Koppert, H.-J., H. Haase, O Gehrke, S. Lehmann,
1999: Lessons learned from developing a prototype
meteorological workstation in Java, Seventh
Workshop on Operational Meteorological Systems,
Reading, UK, ECMWF Workshop Proceedings,
150-155

