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1. INTRODUCTION

Estimates of precipitation at regional scales constitute one
of the most important input parameters for hydrologic im-
pact assessment studies. At these scales, Limited Area
Models (LAMs) provide an emerging means for enhanc-
ing the accuracy of precipitation predictions (Giorgi and
Mearns, 1991; Kim and Soong, 1996; Miller and Kim,
1996; Kim et al., 1998). Dynamic downscaling using LAMs
yield precipitation predictions which are physically and dy-
namically consistent with other atmospheric variables pro-
duced in the downscaling procedure. Dynamical downscal-
ing, however, is computationally expensive and not error-
free due to limited spatial resolution and model parameter-
izations. Stochastic characterization of rainfall fields based
on rain gauge data and ancillary information, e.g., terrain el-
evation, still provides one of the basic tools for constructing
rainfall maps at regional scales (Bras and Rodríguez-Iturbe,
1985; Seo et al., 2000; Kyriakidis et al., 2002), even though
the physical and dynamic consistency of such maps is not
guaranteed.

Time domain approaches for modeling daily precipitation
typically involve vectors of time series, e.g., multivariate au-
toregressive (AR) models. Such models exploit the typically
better informed time domain, but are limited to predictions
only at rain gauge locations (Wilks, 1998; von Storch and
Zwiers, 1999). This limitation hinders the all important task
of spatiotemporal mapping. More recently, time series ap-
proaches have been generalized to a continuous spatial do-
main and maps of precipitation levels are constructed at any
arbitrary location via interpolation of time series model pa-
rameters (Johnson et al., 2000).

In this paper, a framework for stochastic spatiotemporal
modeling of daily precipitation in a hindcast mode is pre-
sented. Observed precipitation levels in space and time
are modeled as a joint realization of a collection of space-
indexed time series, one for each spatial location. Time
series model parameters are spatially varying, thus cap-
turing space-time interactions. Stochastic simulation, i.e.,
the procedure of generating alternative precipitation real-
izations (synthetic fields) over the space-time domain of in-
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terest (Deutsch and Journel, 1998), is employed for ensem-
ble prediction. The simulated daily precipitation fields re-
produce a data-based histogram and spatiotemporal covari-
ance model, and identify the measured precipitation values
at the rain gauges (conditional simulation). Such synthetic
precipitation fields can be used in a Monte Carlo framework
for risk analysis studies in hydrologic impact assessment
investigations (Bras and Rodríguez-Iturbe, 1985; Kyriakidis
et al., 2001).

2. SPATIAL TIME SERIES

In the proposed methodology, daily precipitation is mod-
eled as a collection of spatially correlated time series,
{Z(u, t),u ∈ D, t ∈ T}, one per location u ∈ D; here u =
(u1,u2) denotes the 2D spatial coordinate vector, D de-
notes the study area, and T the time span of interest. That
spatiotemporal process is decomposed into:

Z(u, t) = M(u, t)+R(u, t), ∀u ∈ D, ∀t ∈ T (1)

where M(u, t) is a stochastic space-time component mod-
eling some “average” smooth variability of the spatiotempo-
ral process Z(u, t), and R(u, t) is stationary residual com-
ponent, independent of M(u, t), modeling higher frequency
fluctuations around that trend in both space and time.

The trend component typically characterizes long-term
temporal patterns, for example precipitation variability at-
tributed to climatic factors. Other patterns of variability, e.g.,
those linked to local weather conditions, are typically ac-
counted for by the stochastic residual component. It should
be stressed that the dichotomy of equation (1) is a (sub-
jective) modeling decision: there is no “true” temporal trend
component, since there are no trend data. The resulting
residual component is thus a collective term for all compo-
nents of variability that are not included in the trend model
(Thiébaux, 1997).

The temporal characteristics of precipitation profiles are
not stationary in space. For example, spatially varying
weather conditions can lead to different patterns of precipi-
tation temporal variability in regions near the ocean than in
orographically isolated areas. It is critical to consider spa-
tially non-stationary patterns of temporal variability in the
modeling procedure, as well as to account for the influence
of ancillary information on the spatial distribution of these



parameters.
In this paper, local parametric models for the tempo-

ral trend of daily precipitation are first established at the
rain gauges. The joint spatial distribution of the temporal
trend model parameters is then characterized in a stochas-
tic mode via a vector random function (RF) or random field
model (Wackernagel, 1995). Estimates of these parameters
are constrained by additional information, such as terrain el-
evation and its interaction with large-scale specific humidity
derived from an assimilated data product from the National
Centers for Environmental Prediction and the National Cen-
ter for Atmospheric Research (NCEP/NCAR reanalysis).

The residuals from these local trend models are re-
garded as a realization of a stationary spatiotemporal pro-
cess. Realizations of this process are generated via con-
ditional stochastic simulation and added to the estimated
trend component to produce alternative conditional realiza-
tions of the spatiotemporal distribution of daily precipitation.

2.1. Station-specific temporal trend models

The sample precipitation profile {z(uα, ti), i ∈ Tα} at each
rain gauge location with coordinate vector uα is regarded as
a realization of a random process {Z(uα, ti), i ∈ Tα}, where
Tα is the time span of measurements at uα. This random
process {Z(uα, ti), i ∈ Tα} is decomposed as:

Z(uα, ti) = m(uα, ti)+R(uα, ti), i = 1, . . . ,Tα (2)

where {m(uα, ti), ti ∈ Tα} is a deterministic temporal trend,
and {R(uα, ti), ti ∈ Tα} is a stationary, zero mean, stochas-
tic residual process.

The deterministic trend at each rain gauge location uα ∈
D is modeled as the sum of (K + 1) basis functions of time
fk(t):

m(uα, ti) =
K

∑
k=0

bk(uα) fk(ti), i = 1, . . . ,Tα (3)

where bk(uα) is the coefficient (intensity) associated with
the k-th function fk(ti), with f0(ti) = 1 by convention.

Each basis function fk(t) is independent of the spatial lo-
cation u, and should ideally have a physical interpretation
pertinent to the entire study region. Periodicities, especially
when physically interpretable, should be incorporated in the
deterministic trend {m(uα, ti), t ∈ Tα} as a Fourier series.
Alternatively, such basis functions could be identified to a
set of orthogonal factors derived via Empirical Orthogonal
Function (EOF) analysis of the rain gauge precipitation pro-
files (von Storch and Zwiers, 1999), or to the spatial average
of the latter.

The (K+1) temporal trend coefficients bα = [bk(uα),k=
0, . . . ,K]′ are modeled at each rain gauge location uα, in-
dependently from one location to another, using multiple re-
gression; here superscript ′ denotes a vector (or matrix)
transpose. More precisely, the precipitation data at rain
gauge uα are expressed as:

zα = Fbα + rα, α ∈ (n) (4)

where zα = [z(uα, ti), i = 1, . . . ,Tα]′ is a (Tα×1) vector of
observations available at location uα, F is a (Tα× (K + 1))
design matrix whose k-th column is the k-th basis function
fk = [ fk(ti), i = 1, . . . ,Tα]′, and rα = [r(uα, ti), i = 1, . . . ,Tα]′

is a (Tα×1) vector of residuals at location uα; n is the num-
ber of rain gauges.

The vector of coefficients bα is expressed as a weighted
linear combination of the data vector zα: bα = Hαzα, where
Hα is a ((K +1)×Tα) matrix of weights assigned to each of
the Tα data. If the matrix F is of full rank, the above system
has a unique solution and the resulting matrix of weights
Hα is given by the ordinary least squares (OLS) solution:
Hα = (F′F)−1F′ (Searle, 1971).

Once the (K + 1) coefficients bα specific to each rain
gauge location uα are determined, the temporal trend
model {m(uα, ti), ti ∈Tα} at that location is given by expres-
sion (3), and the corresponding residual series are obtained
as:

r(uα, ti) = z(uα, ti)−
K

∑
k=0

bk(uα) fk(ti), i = 1, . . . ,Tα (5)

In this work, the (K + 1) station-specific temporal trend co-
efficients are defined via the algorithm adopted for their con-
struction (e.g., OLS); these coefficients are treated as pre-
cise data.

2.2. Regionalizing temporal trend
coefficients

Recall that temporal trend models {m(uα, t), t ∈ T} are es-
tablished independently at each rain gauge location uα.
The resulting temporal trend model parameters {bk(uα),
α = 1, . . . ,n}, k = 0, . . . ,K, are spatially (cross)correlated
since they are derived from the same process z-data, them-
selves correlated in space and time. Spatiotemporal inter-
actions between the (K + 1) temporal trend components
are characterized via the spatial (cross)correlation of the lo-
cal trend model parameters.

In this work, a stochastic spatiotemporal trend model
M(u, t) is defined by viewing the set of (K + 1) trend bk-
coefficients as a joint realization of a set of (K + 1) cross-
correlated RFs {Bk(u),u ∈ D}, k = 0, . . . ,K, i.e.:

M(u, t) =
K

∑
k=0

Bk(u) fk(t), ∀u ∈ D,∀t ∈ T (6)

Estimation of the spatiotemporal trend reduces to the
joint spatial prediction of the set of (K + 1) temporal trend
coefficients {b∗∗k (u),u ∈ D}, k = 0, . . . ,K, at any location
u∈D (the use of superscript ∗∗, which denotes an estimate
as the superscript ∗, is justified below). Joint modeling is re-
quired to account for any cross-correlation between the bk-
coefficients. For example, a negative correlation between
intercept and slope fields, B0(u) and B1(u), inherent to any
line-fitting procedure, should be accounted for in spatial pre-
diction.



Indeed, a set of (K + 1) estimated coefficient values
{b∗∗k (u), u ∈ D}, k = 0, . . . ,K, would yield an estimate of
the spatiotemporal trend field {m∗(u, t),u ∈ D, t ∈ T} over
the space time domain, as:

m∗(u, t) =
K

∑
k=0

b∗∗k (u) fk(t), ∀u ∈ D, ∀t ∈ T (7)

Spatial prediction of these coefficients is enhanced by
considering relevant ancillary information, such as ter-
rain elevation or lower-atmosphere variables derived from
NCEP/NCAR reanalysis. For example, an initial estimate
b∗k(u) of the unknown k-th coefficient bk(u) at location u is
given by a a regression of the bk-values derived at the rain-
gauges on the collocated samples of L auxiliary variables;
samples of the latter variables are assumed representative
of an area equal to the cell size of the prediction/simulation
grid.

More precisely, the n values of the k-th coefficient ob-
tained at the n rain gauge locations are expressed as:

bk = Gqk + r k (8)

where bk = [bk(uα),α = 1, . . . ,n]′ is a (n×1) column vector
of samples of the k-th coefficient, G is a (n×(L+1)) design
matrix whose l -th column contains n values of the l -th aux-
iliary variable gl = [gl (uα),α = 1, . . . ,n]′, qk = [qk(uα),k =
0, . . . ,K]′ is a ((L + 1)×1) vector of coefficients, and rk =
[rk(uα),α = 1, . . . ,n]′ is a (n×1) column vector of residu-
als.

Once an estimate q∗k of the vector qk of regression coeffi-
cients is obtained by OLS, the regression prediction b∗k(uα)
for the k-th temporal trend coefficient bk(uα) at any rain
gauge uα is given as: b∗k(uα) = Gq∗k. The associated re-
gression residual is then computed as: rk(uα) = bk(uα)−
b∗k(uα) = bk(uα)−Gq∗k.

Residual rk-values from the above regression procedure
are most likely auto- and cross-correlated in space. Con-
sequently, their spatial estimation calls for modeling the
(cross)covariance matrix of the vector RF {Rk(u),u ∈ D},
k = 0, . . . ,K modeling the joint spatial correlation of these
regression residuals. The geostatistical prediction algo-
rithm of cokriging is adopted for this joint prediction task
(Wackernagel, 1995). The simple cokriging (SCK) esti-
mate r∗0(u) for the unknown intercept regression residual
r0(u) = b0(u)−b∗0(u), for example, at any location u ∈ D
is expressed as:

r∗0(u) =
K

∑
k=0

w′krk (9)

where r k = [rk(uα),α = 1, . . . ,n]′ denotes the (n×1) vec-
tor of regression residual values for the k-coefficient, and
wk = [wαk(u),α = 1, . . . ,n]′ the n× 1 vector of cokriging
weights assigned to these data for prediction of the regres-
sion residual r0(u) at location u, and obtained per solution

of the SCK system of equations: C00· · ·C0K
...

. . .
...

CK0 · · ·CKK


 w00

...
w0K

=

 c00
...

c0K

 (10)

where Ckk′ denotes the n× n matrix of auto or cross-
covariance values between any pair of regression residu-
als rk(uα) and rk′(uβ), and c0k denotes the (n×1) vector
of auto or cross-covariance values between any regression
residual rk(uα) and the unknown residual r0(u). Similar
equations can be written for the spatial prediction of residu-
als related to other bk-coefficients, i.e., for k 6= 0.

An estimate b∗∗k (u) of the unknown k-th coefficient bk(u)
at any location u ∈ D is finally obtained as:

b∗∗k (u) = b∗k(u)+ r∗k(u) (11)

and is then used in equation (7) to yield an estimated spa-
tiotemporal trend component m∗(u, t) at any location u ∈D
and for any day t ∈ T.

2.3. Simulation of space-time precipitation

The spatiotemporal residual r-values resulting from equa-
tion (5) are modeled as a realization of a stationary space-
time process {R(u, t),u ∈ D, t ∈ T}. Stochastic character-
ization of this process calls for modeling the spatiotempo-
ral covariance of these r-residuals. In this work, this co-
variance is modeled as a sum of a purely temporal and a
purely spatial component, plus a common spatiotemporal
component. The latter captures stochastic space-time in-
teractions via the definition of a generalized distance met-

ric: d =
√

u2
1 +u2

2 + t2, see Kyriakidis and Journel (1999)

for details.
Simulation of the residuals in space and time proceeds

by generating alternative realizations of the residual field
R(u, t) conditional on the residual data and their spatiotem-
poral covariance model. To this respect, sequential Gaus-
sian simulation is used (Deutsch and Journel, 1998) for
generating a S-member ensemble of residual realizations
{r(s)(u, t),u ∈ D, t ∈ T}, s= 1, . . . ,S.

A set of S simulated precipitation realizations
{z(s)(u, t),u ∈ D, t ∈ T}, s = 1, . . . ,S, is finally built by
adding the single estimated trend {m∗(u, t),u ∈ D, t ∈ T}
and the Ssimulated residual {r(s)(u, t),u∈D, t ∈ T} fields.
For a more elaborate procedure, which also accounts for
the uncertainty in the estimated trend component m∗(u, t),
the reader is referred to Kyriakidis and Journel (2001).
Note that any missing values in the rain gauge precipitation
profiles are in-filled by simulation. The set of S alternative,
equally probable, realizations {z(s)(u, t),u ∈ D, t ∈ T}
provide a model of uncertainty for the unknown precipita-
tion levels in both space and time, which can be used for
hydrologic impact assessment studies (Kyriakidis et al.,
2001).



3. CASE STUDY

The study domain is a 300×360km2 area of the northern
California coastal region, which is characterized by com-
plex terrain and extreme seasonal variation in precipitation.
Annual precipitation varies from 200mm/year in the Central
Valley (east of the Coastal Range) to over 1300mm/year in
the Santa Cruz Mountains (north of the Monterey bay). Pre-
cipitation in the region generally originates from stratiform
clouds due to orographic lifting of the westerly flow over the
western slope of the Coastal Range. Occasionally, strong
convection embedded within the stratiform clouds gener-
ates intense local precipitation.
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Figure 1:Time average (from 11/01/1981 to 01/31/1982) of ob-
served daily precipitation at 77 rain gauges (A), and space aver-
age of precipitation profiles for the same 92 days (B).

The rainfall data set used in this study consists of 77 rain
gauge precipitation measurements of daily rainfall during
the 92 days from November 1 1981 to January 31 1982, see
Figure 1. The original daily precipitation values constitute a
subset of the Cooperative Observer (COOP) and first-order
precipitation stations, obtained from the National Oceanic
and Atmospheric Administration (NOAA); for details see
Pandey et al. (1999). The proportion of rain gauge data
above the threshold of 0.01mm (indicating a wet day) over
all 92 days is 0.39. Wet-day precipitation amounts range
from 0.25mm to 291.38mm, with a mean of 14.98mm and
a median of 6.35mm indicating a positively skewed precipi-
tation distribution. The standard deviation and coefficient of
variation of the wet-day precipitation amounts is 23.88mm
and 1.59, respectively, indicating a significant spatiotempo-
ral variability. The objective of this study is to generate en-
semble predictions of precipitation on a 300× 360 grid of
cell size 1km2 for the period 11/01/1981 to 01/31/1982, us-
ing all relevant information available for this region.

The first step is to establish a set of local temporal trend
models of precipitation at each rain gauge, see Section 2.1.
To this respect, two basis functions are used as temporal
precipitation predictors at each rain gauge: f0 = [ f0(ti) =
1, i = 1, . . . ,92]′, and f1 = [1

n ∑n
α=1z(uα, ti), i = 1, . . . ,92]′,

see equation (4). In other words, the spatial average f1 of
the precipitation profiles from the 77 rain gauges, Figure 1B,
is used as the temporal precipitation predictor at each rain
gauge. Two temporal trend coefficients are thus available

at each rain gauge uα: an intercept coefficient b0(uα) and
a slope coefficient b1(uα), see Figure 2. Rain gauges with
near zero intercept and near unit slope values (see the east-
ern part of the study domain and the south Bay Area) indi-
cate precipitation profiles very similar to the spatially aver-
aged profile f1.
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Figure 2:Coefficients, intercept (A) and slope (B), of local tem-
poral trend models established at the 77 rain gauges.

A measure of the predictive ability of the spatially aver-
aged precipitation profile f1 is the regression coefficient of
determination (R2) computed at each rain gauge. The spa-
tial variability of these R2-values is shown in Figure 3A. The
average R2 value is 0.58, with a minimum of 0.09 and a
maximum of 0.87 (Figure 3B), indicating that the propor-
tion of temporal precipitation variance accounted for by the
spatially-averaged precipitation profile f1 changes signifi-
cantly from one rain gauge to another. Precipitation profiles
at rain gauges with high R2-values (located in the northern
part of the study area and in the Santa Cruz mountains)
can be adequately characterized by a linear regression on
the spatially-averaged profile f1.
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Figure 3: Proportion of variance, as quantified by the regres-
sion coefficient of determination (R2), of precipitation temporal
variability accounted for by local temporal trend models at the 77
rain gauges (A), and histogram of R2-values (B).

Joint spatial prediction of intercept b0 and slope b1 co-
efficients at any location u in the study domain D is en-
hanced by accounting for their relation with terrain eleva-
tion and its interaction with specific humidity derived from
NCEP/NCAR reanalysis data, see Section 2.2. A smoothed
version of a United States Geological Survey (USGS) dig-



ital elevation model was used in this study. The smooth-
ing window of 13×13km2 was determined by maximizing
the correlation between time averaged precipitation (Fig-
ure 1A) and smoothed elevation, see Kyriakidis et al. (2002)
for details. Time averaged specific humidity integrated over
850− 1000hPa was derived by interpolation from the 9
NCEP/NCAR reanalysis nodes closest to the study domain,
and represents the large-scale availability of moisture in the
lower atmosphere over the time span of interest.
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Figure 4:Maps of rank-transformed window averaged elevation
(A), and rank-transformed interaction of smoothed elevation with
large-scale specific humidity derived from NCEP/NCAR reanaly-
sis nodes (B).

The rank transform of the window averaged elevation
(Figure 4A) was used as an auxiliary variable in the spa-
tial prediction of intercept b0-coefficients. Similarly, the
rank transform of the product (interaction) of specific hu-
midity with the smoothed terrain elevation (Figure 4B) was
used as an auxiliary variable in the spatial prediction of
slope b1-coefficients. The R2-values for the regression
of intercept b0-coefficients (Figure 2A) on collocated rank-
transformed smoothed elevation values (Figure 4A), and
of slope b1-coefficients (Figure 2B) on rank-transformed
humidity-elevation interaction values (Figure 4B) were 0.1
and 0.34 respectively, see equation (8). Both regression
models were statistically significant at the 95% level.
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Figure 5: Maps of estimated temporal trend coefficients, inter-
cept (A) and slope (B), derived respectively by regression on el-
evation and its interaction with NCEP/NCAR specific humidity,
followed by simple cokriging (SCK) of the resulting residuals.

Simple cokriging was used for the joint spatial predic-

tion of the resulting regression residuals r0 and r1, see
Section 2.2 and equations (9) through (10). All auto- and
cross-covariance functions of these residuals (not shown)
were jointly modeled using the linear model of coregional-
ization (Wackernagel, 1995). The maps of estimated tem-
poral trend coefficients, intercept b0-values and slope b1-
values are shown in Figures 5A and B, respectively. Note
that (co)kriging is an exact interpolator, which implies that
regression residual rk-values, hence temporal trend coef-
ficient bk-values, are reproduced at their respective rain
gauge locations.
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Figure 6: Two (out of 30) synthetic precipitation fields for
November 13 1981 (A-B) generated by conditional stochastic
simulation.

A set of 30 alternative realizations of daily precipitation
over the 300×360grid of cell size 1km2 for the 92 days from
November 1 1981 to January 31 1982 were generated us-
ing conditional stochastic simulation, see Section 2.3. Two
of these realizations for November 13 1981 are shown in
Figure 6. Conditioning entails that areas around high (low)
rain gauge precipitation values (see Figure 8B) appear also
as areas of high (low) precipitation in all simulated realiza-
tions.
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and semivariogram (B) from five precipitation realizations for
November 13 1981 (solid line: semivariogram of observed pre-
cipitation; dashed lines: semivariograms of simulated precipita-
tion realizations).

The reproduction of the rain gauge precipitation his-
togram for November 13 1981 by the histograms of five pre-
cipitation realizations is shown via the quantile-quantile plot
of Figure 7A; a plot aligned along the first bisector implies
two nearly identical distributions. The corresponding semi-
variogram reproduction is shown in Figure 7B; the sam-



ple precipitation semivariogram is well approximated by the
semivariograms of the five precipitation realizations. Simu-
lated daily precipitation realizations thus provide a realistic
synthetic representation of the true (unknown) precipitation
field, insofar they reproduce the histogram and semivari-
ogram of observed rain gauge data.
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Figure 8:Precipitation ensemble average for November 13 1981
(A) computed from 30 simulated realizations, and observed pre-
cipitation at 77 rain gauges for the same day (B).

The ensemble average of simulated precipitation is also
given in Figure 8A, along with the contemporaneous rain
gauge data (Figure 8A) for comparison. It should be noted
that this latter field does not reproduce the statistical prop-
erties (histogram, semivariogram) of the rain gauge data. It
does reproduce rain gauge precipitation data at their loca-
tions, but provides a smooth picture of the spatial distribu-
tion of daily precipitation. Ensemble average fields should
be used with caution in hydrologic impact assessment stud-
ies since they do not accurately depict the spatiotemporal
variability of daily precipitation, an input of paramount im-
portance in hydrologic modeling.
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Figure 9: Reproduction of observed precipitation variability at
the test location shown in Figure 1.B: Thirty-member ensemble
of simulated daily precipitation profiles at test location (dotted
lines) and their ensemble average (thick solid line),A, C: precip-
itation profiles at nearby rain gauges #5 and #60.

Last, we compare the simulated precipitation profiles at
the test location shown in Figure 1, with precipitation pro-
files at two nearby rain gauges #5 and #60, all located in
the same mountainous region. The set of thirty simulated
profiles, and their ensemble average, at the test location

is shown in Figure 9B. The precipitation profiles at the two
nearby rain gauges are shown in Figures 9A and C, respec-
tively. One can appreciate the similarity of the simulated
precipitation profiles to the two rain gauge profiles. Note
the common rainfall intermittence pattern exhibited by all
profiles, and the similarity of the ensemble precipitation av-
erage profile (solid line of Figure 9B) to those of the nearby
rain gauges. The average correlation coefficient between
the simulated precipitation profiles and the precipitation pro-
file of rain gauge #5 is 0.73 with a standard deviation of
0.16. Similarly, that average correlation coefficient with rain
gauge #60 is 0.72 with a standard deviation of 0.16. The
ensemble average precipitation profile has correlation coef-
ficient 0.91 with the precipitation profile at rain gauge #5,
and 0.89 with that at rain gauge #60.

This latter comparison of temporal profiles of simu-
lated and observed precipitation corroborates the fact that
daily precipitation realizations generated via the proposed
methodology constitute a realistic synthetic representation
of the true (unknown) precipitation field.

4. DISCUSSION

A framework for stochastic spatiotemporal modeling of daily
precipitation in a hindcast mode has been presented in this
paper. Observed daily precipitation levels are viewed as a
joint realization of a collection of spatially correlated time se-
ries, thus capitalizing on the typically better informed time
domain. The spatiotemporal daily precipitation field is de-
composed into a stochastic trend and a stochastic resid-
ual component. Parametric temporal trend models are es-
tablished at all rain gauges, independently from one loca-
tion to another, and their parameters are (co)regionalized in
space to yield an estimate of the space-time trend compo-
nent at any location for any day. The joint spatial predic-
tion of such temporal trend coefficients accounts for their
relation with ancillary information, i.e., a smoothed version
of terrain elevation and its interaction with large-scale spe-
cific humidity obtained from NCEP/NCAR reanalysis nodes.
Simulated realizations of daily precipitation in space and
time are obtained by generating alternative realizations of
the spatiotemporal residual component and adding them to
the estimated trend component.

The case study illustrated the generation of multiple syn-
thetic realizations of daily precipitation on a 300×360grid
of cell size 1km2 over a region in northern California for 92
days during the period 11/01/1981 to 01/31/1982. Simu-
lated precipitation realizations were shown to reproduce the
histogram and semivariogram model of the rain gauge data.
In addition, simulated precipitation profiles compared well
with observed profiles at nearby rain gauges.

The set of alternative precipitation realizations consti-
tutes a model of uncertainty regarding the unknown daily
precipitation levels in both space and time. Such an uncer-
tainty model can be used in a risk analysis context to study
the effect of uncertain precipitation forcing on hydrologic im-



pact assessment investigations.
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