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1. INTRODUCTION 

 
1.1 Statement of problem 

Estimation of soil moisture using microwave remote 
sensors holds great promise for many applications, 
including numerical weather prediction and agriculture.  
However, a scale disparity exists between the 
resolutions of future satellite-borne microwave remote 
sensor data (30-60 km) and the much finer scales at 
which soil moisture estimates are desired (~ 1 km).  
Hydrology models may be useful for bridging this gap, 
as the factors controlling soil moisture variability 
(precipitation, soil and vegetation properties, 
topography) are known with reasonable accuracy at fine 
spatial scales and can be used in models to estimate 
the spatial distribution of soil moisture at high 
resolutions.  Therefore, in order to facilitate the 
assimilation of remote sensing data, it is important to 
explore ways to disaggregate low-resolution passive 
microwave remote sensing data to the higher resolution 
of a hydrologic model.   
 
1.2 Scientific Objective and Approach 

The objective of this study is to test the 
performance of a Neural Network-based model, called 
DisaggNet, developed to address the feasibility of 
disaggregating low-resolution satellite microwave 
remote sensing data to estimate soil moisture, and to 
quantify estimation errors as a function of input data 
resolution.  Ideally, the purpose of a disaggregation 
scheme is to produce the ‘correct’ high-resolution (sub-
pixel) pattern of soil moisture from lower-resolution 
remotely-sensed observations.  However, there are 
several practical issues to address in developing such a 
scheme.  First, the ‘correct’ sub-pixel soil moisture 
pattern within a satellite footprint is rarely, if ever, known 
within acceptable error bounds.  Thus, the data for 
developing statistical models or more complex models 
such as neural networks, both of which rely on some 
type of data fitting, do not exist, and may never exist, for 
areas larger than field scale.  When satellite data  
_______________________________________________________ 
 

* Corresponding author address:  William Crosson, 
National Space Science and Technology Center, 320 
Sparkman Dr., Huntsville, AL 35805; 
email: bill.crosson@msfc.nasa.gov 
 
 
 

become available operationally on a global scale, it may 
be possible to develop a disaggregation scheme using 
a combination of remotely-sensed data and land 
surface hydrology/radiative transfer model output.  
Currently, however, high-resolution data from aircraft 
platforms are available for limited areas and times 
during intensive field experiments.  While these could 
theoretically be used to develop a disaggregation 
scheme, the results would likely not be transferable to 
other geographical areas or even to different 
hydrometeorological conditions in the same region.  
Furthermore, the amount of data needed to adequately 
train a neural network exceeds the amount obtained in 
a typical field campaign. 

Because of this paucity of remotely-sensed 
observations, we believe that the most tenable 
approach is to train a neural network using solely model 
output, and then test its performance using the 
remotely-sensed data.  In this scenario, model-
simulated data serves as a proxy for satellite-borne 
microwave remote sensor data.  This approach requires 
the following assumptions: 

 
1. The surface hydrology/radiative transfer model 

accurately simulates the spatial patterns of soil 
moisture and brightness temperature within a 
satellite footprint, although the footprint mean may 
be biased with respect to the ground truth. 

2. The low-resolution brightness temperature 
observations are unbiased and have a known noise 
variance with respect to the ground truth. 
 
In other words, the neural network is designed to 

reconstruct the model (high-resolution) soil moisture 
pattern within a satellite footprint while preserving the 
mean remotely-sensed brightness temperature (TB) or 
microwave emissivity (ε), which may differ significantly 
from the model mean over the footprint.  To the extent 
that the emissivity-soil moisture relationship is linear, 
the neural network will also preserve the footprint-mean 
soil moisture.   

In this paper we present a description of the 
disaggregation methodology and results related to 
training and testing of the scheme using solely model 
data.  In future research we will apply the scheme to 
aircraft remote sensing data as a more relevant 
application of the method. 

 
 



2. DESCRIPTION OF MODELS AND DATA 
 

2.1 Models 
 SHEELS 

The land surface flux-hydrology model used in this 
study is SHEELS (Simulator for Hydrology and Energy 
Exchange at the Land Surface), the physics of which 
are based on the Biosphere-Atmosphere Transfer 
Scheme (BATS) of Dickinson et al. (1993).   Variables 
such as surface energy fluxes and temperatures are 
modeled similarly to an earlier version of the model 
(Smith et al. 1993).  Sub-surface processes in SHEELS 
differ significantly from BATS (Crosson et al., in press).  
In SHEELS, the number and depth of soil layers is user-
defined, permitting higher vertical resolution near the 
surface where temperature and moisture gradients are 
large.  The soil water dynamics algorithms in SHEELS 
include Darcy flow to model vertical sub-surface fluxes 
and a kinematic wave approach to simulate overland 
flow.  Together, these modules estimate the three-
dimensional soil water fluxes. 
 Forward radiative transfer model 

The forward radiative transfer model (RTM) 
coupled with SHEELS is based on the coherent wave 
model of Njoku and Kong (1977) and is used to 
estimate L-band microwave brightness temperature.  
The effects of surface roughness and vegetation are 
corrected for using accepted techniques.  Required 
RTM inputs of surface temperature and soil moisture 
and temperature profiles are provided through the 
coupling with SHEELS.  The remaining input variables 
(surface roughness, vegetation water content and soil 
density profiles) are based on measurements. 

Disaggregation Neural Network (DisaggNet) 
We have approached the problem of 

disaggregation using a linear Artificial Neural Network 
(ANN).  The ANN chosen is the simplest imaginable 
ANN, consisting of a single neuron.  All of the inputs are 
weighted and then summed. The input to output 
mapping function is linear.  Inputs and outputs of 
DisaggNet are described in section 2.3. 
 
2.2 Model domain and data 

We have applied the disaggregation scheme using 
data collected across the Little Washita River Basin 
(LWRB) in central Oklahoma (Figure 1) during the 
Southern Great Plains 1997 Hydrology Experiment 
(SGP ’97) conducted during June and July, 1997 
(Jackson, 1999).  Aircraft remote sensing data were 
collected on near-daily basis by the Electronically 
Steered Thinned Array Radiometer (ESTAR) for a 
region of approximately 40 x 280 km region 
encompassing the LWRB.  We restricted our 
simulations to the approximate 600 km2 area of the 
LWRB because it contains the highest concentration of 
meteorological and soil moisture measurements in the 
SGP ’97 experimental domain.  The time period for 
which we have applied the disaggregation scheme is 
from 18 June (DOY 169) through 20 July (DOY 201).  
 
 
 

Fig. 1.  Digital Elevation Model and stream network for 
the Little Washita River Basin, OK. 

 
A model grid of 800 m was used in model 

simulations.  Land surface properties were specified on 
that grid in SHEELS by the following data sets: 

  
• Elevation, slope: USDA/ARS 30 m DEM 
• Hydrography: USGS DLG's 
• Vegetation parameters: SGP '97 30 m Land Cover 
• Soil properties: CONUS 1 km multi-layer soil 

characteristics 
• Meteorological and soil moisture and temperature 

data: Oklahoma Mesonet, USDA/ARS Micronet, 
SGP ’97 soil profile stations 

• Precipitation: USDA/ARS Micronet raingage data  
 

Original data were aggregated using the mean or 
mode, whichever was more appropriate.  The CONUS 
soil properties were resampled to the model grid; 
surface soil texture classes are shown in Figure 2.  
Meteorological data, with the exception of rainfall, were 
averaged across all sites and applied uniformly across 
the LWRB.  Micronet raingage point measurements 
were converted to 800 m gridded data by constructing 
Thiessen polygons around each gage location. 

 
Fig. 2.  Surface soil texture classes for the LWRB, OK.  

 
 
 
 



Figure 3 shows the temporal behavior of basin-
mean near-surface (0-5 cm) fractional water content 
estimated at hourly time steps by SHEELS.  This 
quantity is the proportion of saturation and is defined as 
volumetric water content divided by soil porosity.  From 
the beginning of the period until day 191, there was a 
general drying trend, interrupted by four minor rain 
events.  On days 191-192 a substantial basin-wide rain 
event occurred, with a basin mean rainfall of 46.7 mm.  
This resulted in the wettest observed conditions, with 
much of the watershed, especially the western end, 
briefly reaching saturation. 

Fig. 3.  Basin-mean fractional soil water content 
estimated by SHEELS for the 0-5 cm layer. 

 
3. DISAGGNET TRAINING USING MODEL OUTPUT  

 
As discussed in section 1, our approach was to 

train DisaggNet using soil moisture and emissivity 
output from the coupled SHEELS/RTM model.  In so 
doing, the DisaggNet learns a ‘mapping’ from low 
(sensor) resolution ε to high (model) resolution soil 
moisture that is conservative in ε at the footprint scale 
and seeks to replicate the model patterns of soil 
moisture.  We use ε instead of TB to eliminate the 
diurnal cycle caused by surface temperature variations.  
The accuracy of this relationship depends on how well 
SHEELS/RTM characterizes these sub-pixel scale 
patterns, i.e. the validity of our first assumption.  Once 
DisaggNet is trained, this mapping can be applied to 
actual remotely-sensed observations.  Because the 
mapping preserves the pixel-scale means, any large-
scale errors in the model estimates will be ‘corrected’ 
via application of DisaggNet, based on our second 
assumption that the remotely-sensed measurements 
are unbiased with respect to ground truth. 

Model outputs used to train and validate DisaggNet 
were generated by running SHEELS/RTM at an hourly 
time step over the LWRB for the 33-day study period 
beginning at 0:00 UTC on day 169.  Initial soil moisture 
conditions were specified using the ESTAR estimates 
from that morning.  The model produces, among other 
variables, soil moisture, TB and skin temperature at 
each model time step on the 800 m model grid.  L-band 
emissivity was calculated by dividing TB by skin 
temperature.  Emissivity was then aggregated by 
averaging over 2x2, 4x4, 8x8, 16x16 and 32x32 grid 
cells.  An independent Normal random deviate with zero 

mean and a standard deviation of 0.02 was added to 
each aggregated emissivity value to more realistically 
represent actual remotely-sensed microwave 
observations.  The emissivity standard error of 0.02 
corresponds to a standard error in TB of 6 Kelvins for a 
skin temperature of 300 K, or approximately 2% in 
volumetric water content. 

DisaggNet was trained to predict high-resolution 
SHEELS upper zone (0-5 cm) fractional soil moisture 
using approximately one-half of the study period (350 
consecutive hours from days 179-193) over all pixels 
simultaneously.  Training was performed separately for 
each emissivity aggregation (2x2 pixels, 4x4, etc.)  
Once trained, DisaggNet generalizes to estimate 
outputs for times outside of the training period.  
DisaggNet is trained with the following inputs: 
• Remotely sensed (low-resolution) emissivity with 

noise 
• Antecedent precipitation for the following time 

periods, in hours prior to current time: 0-1, 1-3, 3-6, 
6-12, 12-24, 24-48, 48-96 and 96-192 

• Clay content 
• Sand content 
• Vegetation water content 
• Upstream contributing area (surface area draining 

into a grid cell) 
 
4. VALIDATION OF DISAGGNET SOIL MOISTURE 
ESTIMATES 

 
At each model time step, the trained DisaggNet 

generates estimates of fractional soil water content at 
each grid cell using the inputs listed above.  Two points 
in time were selected to demonstrate the performance 
of DisaggNet.  These times fall within the period used to 
train DisaggNet, so this is not an independent test, but 
were selected because they are close to the driest and 
wettest times in the study period.  Output from 
DisaggNet for two input resolutions (2x2, or 1.6 km, and 
16x16, or 12.8 km) is compared with SHEELS soil 
moisture estimates for these two times in figures 4-5.  
As shown in fig. 4 for dry soil conditions at 1400 UTC on 
day 184, the SHEELS soil moisture  pattern is captured 
by DisaggNet using either 1.6 km or 12.8 km input.  
This is not unexpected as the input emissivities are 
derived from the SHEELS soil moisture via the RTM.  
The sources of differences between soil moisture 
estimated by DisaggNet and by SHEELS are (1) 
aggregation of emissivity, (2) random noise added to 
the emissivity, and (3) inherent error associated with the 
Neural Network.  In this case the 1.6 km inputs produce 
an overall soil moisture estimate that is slightly biased 
toward higher values with respect to SHEELS, while the 
12.8 km inputs produce virtually unbiased estimates, 
but with greater noise. 
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Fig. 4. DisaggNet soil moisture estimates for the dry soil 
case for 1.6 km (top) and 12.8 km (middle) aggregated 
emissivity input, compared to SHEELS 0-5 cm soil 
moisture (bottom).  Light shading corresponds to low 
soil moisture, dark to high soil moisture. 
 

The wet case corresponds to 1400 UTC on day 192 
and is shown in fig. 5.  The anomalously dry area just 
northeast of the center is due to missing rainfall 
observations from the gage in that area.  This ‘feature’ 
is well-estimated in the DisaggNet output using 1.6 km 
emissivity, but is not captured quite as well in the 12.8 
km case.  
 
 
 
 
 
 

 
 
Fig. 5. Same as fig. 4 except for the wet soil case, with 
a different gray scale. 

 
A quantitative evaluation of the agreement between 

soil moisture estimated by DisaggNet and by SHEELS 
is shown in figure 6 in the form of root-mean-square 
differences (RMSD) across the LWRB at each model 
time step (hour).  Outside of the very wet periods, RMS 
differences for both cases tend to be between 0.03 and 
0.07 (3-7% fractional water content, or 1.5-3.5% 
volumetric water content).  However, during and 
immediately following rain periods, errors become quite 
large – typically greater than 0.10 and occasionally 
above 0.15.  Surprisingly, RMS differences in fractional 
water content are slightly higher for the 1.6 km case 
than for the 12.8 km case, with mean values of .053 
and .048, respectively.  We believe that this is related to 
way the random noise was added to the input 
emissivity, but this is an area of ongoing investigation. 



Fig. 6.  Root-mean-square difference time series 
between fractional water content estimated by SHEELS 
and by DisaggNet using inputs aggregated to 1.6 km 
and 12.8 km grid cells.  The time period used for 
training was from day 179-193. 
 

The spatial distribution of DisaggNet-SHEELS root-
mean-square differences in fractional water content, 
averaged over the 33-day study period, is shown in 
figure 7 for the 12.8 km case.  RMS differences are 
slightly higher in the western part of the basin, where 
rainfall was greater, but are less than 0.1 for almost the 
entire basin.  The two points that are shown as having 
very high RMS differences are, in fact, classified as 
water bodies in SHEELS, where the soil is treated as 
always saturated.  This condition is not well handled by 
DisaggNet due to its linear mapping functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Root-mean-square differences averaged over 
the 33-day study period, between fractional water 
content estimated by SHEELS and by DisaggNet using 
inputs aggregated to 12.8 km grid cells.  
 
5. SUMMARY AND CONCLUSIONS 
 

A neural-network based scheme called DisaggNet 
has been developed for disaggregating low-resolution 
satellite microwave remote sensing data to higher 
resolutions compatible with hydrologic data 
requirements.  DisaggNet has been trained using output 
from a coupled hydrologic/radiative transfer model 

using input data from the SGP ’97 field experiment.  
Results are shown here with a focus on the driest and 
wettest days during the study period. 

In this procedure, microwave emissivity was 
simulated by the coupled model and used as input to 
train the disaggregation scheme.  Emissivity data were 
degraded to various resolutions by simple averaging 
from the model resolution of 800 m, and random 
Gaussian noise was added.   Results are shown here 
for the cases using 1.6 km data (2x2 pixel averaging) 
and 12.8 km data (16x16 averaging).  Overall, the 12.8 
km inputs produced slightly lower RMS differences with 
model-simulated soil moisture, a result that can not be 
explained at this time.  RMS differences are quite low 
during dry periods, but much larger under very wet 
conditions.  We believe that this is due to an 
overestimation of soil moisture in the presence of heavy 
rainfall, which results from the linear nature of the 
rainfall-soil moisture relationship inherent in DisaggNet.   
For the same reason, wetlands or water bodies that are 
constantly saturated are also not well-simulated by the 
disaggregation scheme. 
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