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1. INTRODUCTION 
 

The parameterization of vegetation in land 
surface models plays a major role in the simulation 
of the surface energy balance and therefore 
weather and clim*ate prediction. Historically, 
parameters in land surface process models have 
been assigned based on generalized land surface 
classifications that do not account for local 
anomalies in phenology. More recently, however, 
there have been studies that have incorporated 
satellite remote sensing data in the 
parameterization of the vegetation used in land 
surface models (Sellers et al. 1996; Los et al. 
2000; Zeng et al. 2001). Satellite data provides 
better spatial and temporal resolution and so 
improved sampling of the seasonal variability of 
critical vegetation parameters such as leaf area 
index (LAI) and fractional vegetation cover. Our 
hypothesis is that using these improved remotely-
sensed parameters may produce improved land 
surface simulations and our group is actively 
working on incorporating satellite remote sensing 
data into the Global Land Data Assimilation 
System (GLDAS, http://ldas.gsfc.nasa.gov) 
currently being developed at NASA’s Goddard 
Space Flight Center and at NOAA’s National 
Center for Environmental Prediction. This paper 
presents the current state of this work -- our initial 
methodology and preliminary findings. 
 
2. METHODOLOGY 
 

In this paper we evaluate the changes in LAI 
via the Community Land Model Version 2 (CLM2). 
Our original version of CLM2 assigns LAI 
according to a limited set of classes (1 km 
University of Maryland (UMD) vegetation 
classification), each of which designates a 
maximum and minimum value of LAI (Table 1). 
The LAI at any given time varies seasonally 
between these two values depending on deep 
layer soil temperature. This assignment of LAI is 
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used in the first GLDAS simulation. The second 
uses LAI data from Boston University 
(http://cybele.bu.edu) developed from the 
Advanced Very High Resolution Radiometer 
(AVHRR).  
 

Type ENeed EBroad DNeed DBroad 
Max 6.00 6.00 6.00 6.00 
Min 5.00 5.00 1.00 1.00 

 
Type MixedF Woods W/Grass CShrub 
Max 6.00 6.00 5.13 6.00 
Min 3.00 3.49 2.08 2.00 

 
Type OShrub Grass Crops Urban 
Max 6.00 2.00 6.00 5.00 
Min 1.00 0.50 0.96 1.00 

 
Table 1: Maximum and minimum LAI for the UMD 
vegetation classification. Values apply for evergreen 
needleleaf trees, evergreen broadleaf trees, deciduous 
needleleaf trees, deciduous broadleaf trees, mixed 
forest, woodlands, mixed woodlands / grassland / 
shrubland, closed shrubland, open shrubland, 
grassland, cropland, and urban areas. 
 

The LAI data was derived from values of 
normalized difference vegetation index (NDVI) in 
combination with a radiative transfer model for a 
number of vegetation types and has a spatial 
resolution of 8 km (Myeni et al. 1997). The 
monthly data used in this study is a climatology 
from the years 1981-1992. Preliminary validation 
of the satellite LAI dataset are promising 
(Buerman et al. 2001). In the near future we plan 
to use non-climatological monthly data and also 
begin to incorporate 1 km data from the Moderate 
resolution Imaging Spectroradiometer (MODIS). 

It is important to highlight at this time the 
improvements in the satellite dataset. First, the 
AVHRR derived dataset provides improved spatial 
and temporal sampling. Second, although the 
original LAI designation does provide some sense 
of the seasonality of the vegetation due to the 
dependence on deep soil layer temperature, they 
apply globally for a given vegetation type. On the 
other hand, both latitudinal and longitudinal 
variations are accounted for in the satellite data. 
Third, anomalies in LAI due to varying weather 



regimes (i.e., drought) and agricultural schedules 
are included as a function of the geographical 
region.  

In order to attempt to represent the variability 
in each 8 km pixel as a function of vegetation type, 
a 1 km LAI dataset was constructed by using three 
items: (1) the 8 km LAI data, (2) the 1 km UMD 
vegetation type classification, and (3) mean 8 km 
LAI data that is defined as a function of 10° 
latitude zone, month of year, and vegetation type. 
This mean value quantifies how the LAI data of 
different vegetation types relate to each other as a 
function of month and latitude zone (Zeng, X. et al. 
2001). Therefore, the 1 km LAI values vary both 
higher and lower than the 8 km LAI based on this 
mean but also are impacted by the percentage of 
each of the vegetation types in the 8 km pixel (in 
order to provide some information to weight the 
predominant vegetation types). The above 
relationships are constrained to the 8 km LAI 
value. Moreover, each 1 km LAI value was divided 
by a 1 km fractional vegetation cover in order to 
obtain a 1 km LAI value for vegetated area only. 
Table 2 shows an example of this procedure for a 
8 km pixel that contains three vegetation types.  

 
Conditions: 8 km LAI=5.0, July, 40° N, 50% 
evergreen needleleaf trees (V1), 25% cropland (V2), 
25% open shrubland (V3) 
Means for July, 40°N: V1 = 4.9, V2 = 2.5, V3 = 0.9 
V1=(4.9/4.9) *V1, V2=(2.5/4.9) *V1, V3=(0.9/4.9) *V1 
32/64 * V1 + 16/64 * V2 + 16/64 * V3 = 5.0 
Solving for V1 (evergreen trees) LAI = 7.4, similarly 
for V2 (cropland) LAI = 4.3, V3 (open shrubland)  
LAI = 1.4 

 
Table 2: The procedure for constructing the 1 km LAI 
dataset from the 8 km AVHRR LAI dataset. The first row 
shows the conditions (location and 8 km pixel attributes) 
for this example. The second and third rows indicate the 
means that apply for 40° N for July for each vegetation 
type and how they relate to each other. The fourth row 
illustrates the relationship used to constrain the outcome 
to the 8 km LAI value and to weight the respective 
vegetation types. The final row indicates the 1 km LAI 
value for the vegetation types in that 8 km pixel. 
 

Once the 1 km LAI data is estimated, the 1 km 
LAI values for the predominant vegetation type in 
each 0.25° grid box were averaged and these 
values were input into GLDAS via CLM2. Figure 1 
illustrates for June 2001 the respective LAI fields 
for both of the LAI designations at 0.25°. Large 
sections of the eastern United States, the boreal 
forests in Canada and Asia, the Amazon, and 
sections of central Africa show similar magnitudes 
in LAI with parts of the Mississippi Valley, 

southeast US, and central Plains being notable 
exceptions. However, there are some large global 
differences. Much lower LAI values are the norm 
across many areas of the globe such as the 
western US, Mexico, east-central South America, 
central and southern Africa, Australia, and 
sections of Europe and southeast Asia.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: LAI assigned based on a given maximum LAI, 
minimum LAI, and deep layer soil temperature (top) and 
LAI derived from AVHRR (bottom). Both panels apply 
for June 2001. 
 

The preliminary results presented here 
comprise a month long simulation for June 2001 
for the two assignments of LAI. The model runs 
were initialized and forced with meteorology data 
from the National Center for Environmental 
Prediction (NCEP) Global Data Assimilation 
System (GDAS). The GLDAS simulations were 
conducted at 0.25 x 0.25 resolution at hourly time-
steps. 
 
3. RESULTS AND DISCUSSION 
 

Differences in the assignment of LAI impact a 
number of processes and variables in CLM2. In 
this paper we focus on canopy transpiration, soil 
surface temperature, and total column soil 
moisture and focus on North America for the sake 
of clarity.  Figure 2 illustrates the difference in 
canopy transpiration (original LAI – AVHRR LAI) 



between the two model simulations after one 
month. There are some substantial differences 
mainly over the central and western areas of North 
America (transpiration lower with the AVHRR LAI) 
caused by the assignment of much higher values 
of LAI in the original CLM2 (Figure 1). The 
vegetation types in these areas include grassland 
and shrubland that equate to lower LAI values 
using the radiative transfer algorithm then what 
other datasets have shown (Sellers et al. 1996; 
Los et al. 2000). In addition, large areas of 
cropland in this region are impacted by weather 
and agricultural changes. The absolute 
magnitudes in canopy transpiration for the model 
runs ranged up to 350 Wm-2.  

Less canopy transpiration alters the surface 
energy balance through lower total latent heat flux. 
Figure 3 illustrates the difference in soil surface 
temperature and shows a signature very similar to 
that of Figure 2 with warmer soil surface  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Difference in canopy transpiration (original LAI 
– AVHRR LAI) in Wm-2 valid on 30 June 2001.  
 
temperatures in western North America and in 
parts of the southeast US and Mississippi River 
valley where the AVHRR dataset indicates areas 
of lower LAI. In addition, greater solar radiation 
enters the soil and allows higher temperatures. 
The differences are substantial and are range up 
to and over 10° C warmer for the AVHRR 
simulation in parts of the central and western US 
and Mexico. The AVHRR simulation also shows 
that the soil surface temperature across the whole 
continent for the most part is warmer than with the 
original LAI designation. The absolute 
temperatures in both model runs generally ranged 
from 260 – 330 °K globally. 

The lower transpiration in these areas limits 
the loss of total soil moisture content for the 
AVHRR simulation (Figure 4). The soil is 
significantly moister across Mexico for instance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Difference in soil surface temperature (original 
LAI – AVHRR LAI) in °K valid on 30 June 2001. 
 

Other areas across the globe also show this 
impact such as in east-central South America  (not 
shown). The impact of these issues will only 
intensify as the seasonal time scale is reached 
and may have large impacts on local surface 
temperature and climate on interannual time 
scales.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Difference in total column soil moisture content 
(original LAI – AVHRR LAI) in mm valid on 30 June 
2001. 
 

Our hypothesis is that the AVHRR LAI dataset 
will highlight local anomalies in phenology due to 
weather and land use variations and improve the 
simulation. Our group plans to evaluate our 
simulations by comparing our model output to 
satellite derived surface temperature from the 
Geostationary Operational Environmental Satellite 
(GOES) and MODIS as well as other in-situ data 
sources. We also plan on integrating over a 
seasonal time period with additional observed 
forcing datasets.  
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