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1.  INTRODUCTION 
 

 Accurate basin-scale air-sea heat fluxes are 
needed to better understand and predict climate 
variability and change. Numerical Weather Prediction 
(NWP) analysis-forecast systems, e.g., the National 
Center for Environmental Prediction Reanalyses 1 and 
2 (NCEP1 and NCEP2) and the European Centre for 
Medium Range Weather Forecasting (ECMWF), 
provide 6-hourly fluxes with global coverage. However, 
data-model comparative studies carried out in regions 
of the world�s oceans (i.e., Weller and Anderson 1996; 
Wang and McPhaden 2001)  indicate that the ocean 
turbulent heat losses in NWP models are 
overestimated. Sun et al. (2001) compared the NWP 
model analyses with moored buoy observations in the 
Atlantic and found that the overestimation in time-mean 
latent heat loss ranges from about 14 W m-2 (13%) in 
the eastern subtropical North Atlantic to about 29 W m-2 
(30%) in the tropics and to about 30 W m-2 (49%) in the 
midlatitude coastal area, where the overestimation in 
sensible heat flux reaches about 20 W m-2 (60%). 
These systematic overestimations result primarily from 
the biases in bulk variables and the use of inappropriate 
bulk aerodynamic formulas. The contributions of these 
two factors to the heat flux biases vary with region and 
NWP model. 

This study describes the methodology to 
produce an improved daily gridded surface turbulent 
heat flux product in the Atlantic basin for 1988-1999. 
We use an advanced objective analysis technique to 
optimize the individual bulk variables through 
synthesizing data from NWP model analyses and 
satellite measurements. The state-of �the-art TOGA 
COARE flux algorithm 2.6 version (Bradley et al. 2001) 
is applied to those optimized variables, thus to develop 
the surface latent and sensible heat fluxes. The 
technique we use is based on a variational approach 
(Legler et al. 1989; Jones et al. 1995; Yu et al. 2001). 
The approach combines fields in a nonlinear least 
squares format and the solution is the field that best 
minimizes a functional that expresses several 
constraints or �lack of fit� operating on observations, 
background fields, and other physical and dynamical 
expectations. For this analysis, the functional includes 
weighted misfit constraints for NCEP2, ECMWF, and 
satellite measurements along with time evolution and 
Laplacian constraints that are intended to smooth 
solution fields. Each constraint of the functional is 
weighted based primarily on existing knowledge of the 
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regional strengths and weaknesses of each dataset, 
which is briefly described in the next section. 
 
2. DATA 
 

The bulk variables used to calculate air-sea 
turbulent heat fluxes include wind speed, air 
temperature and humidity, and sea surface 
temperature. Daily data of these variables from the 
NCEP2 reanalysis and the operational ECMWF 
analysis, and daily sea surface temperature from the 
Advanced Very High Resolution Radiometer (AVHRR) 
and the Special Sensor Microwave Imager (SSM/I)-
derived 10-m wind speed and humidity are used as 
input datasets in the direct minimization approach. All 
the datasets cover the period of 1988-1999 except the 
SSM/I humidity data, which last from 1988 to 1994. 
These datasets are compared to each other and also to 
moored buoy measurements in regions of the Atlantic, 
including the eastern subtropical North Atlantic, the 
tropical Atlantic and the western coast of the North 
Atlantic (Figure 1). The SSM/I 10-m humidity is height-
adjusted to 2-m humidity using the COARE2.6a flux 
algorithm in order to be comparable with NWP and 
buoy 2-m humidity data. The details of the comparison 
for NPW versus buoy data are described in Sun et al. 
(2001). The following is a summary of this comparison. 

 

 
 
Figure 1.  Locations of moored buoys used for 
comparison with NWP and satellite data. 

 
The 10-m wind speeds from NCEP2 and 

particularly from ECMWF are weaker. In the tropics, the 
NCEP2 and ECMWF wind speeds show low biases of 
0.4±1.2 m s-1 and 0.7±0.8 m s-1 respectively. The 
SSM/I-derived wind speeds are higher than ECMWF 
and NCEP2 by about 0.6 m s-1 and 1.0 m s-1 in the 
northern tropical and subtropical regions, and are closer 
to NCEP2 in other regions. The 2-m humidity from 



NCEP2 and particularly ECMWF is close to buoy data 
in the extratropical region while dry biases of 0.3 ±0.7 g 
k g-1 and 1.0±0.6 g kg-1 in the low latitude are shown in 
NCEP2 and in ECMWF respectively. The SSM/I 2-m 
humidity shows a humid bias in the low latitude. The 2-
m temperature and sea surface temperature from 
NCEP2 and EMWF basically are close to buoy data 
except in the west coastal region, where significant 
biases are found in NWP. Compared to NWP, the sea 
surface temperatures from AVHRR generally are 
slightly lower in the northern tropics and higher in the 
other regions. 

The temporal variability comparison indicates 
that the NWP sea surface temperatures are poorly 
represented on short-time scales. On daily basis, the 
variability of bulk variables from NWP models generally 
are not represented well except in the coastal region, 
where the NWP systems assimilated large quantities of 
in-situ data. NCEP2 and ECMWF show a similarity in 
temporal variability except the variability in sea surface 
temperature, which differs between them and also 
differs from buoy data. 

The above information is used in this analysis 
to subjectively determine the relative weighting of each 
misfit term in the cost functional. The following section 
describes the details of the functional, its minimization, 
and the sensitivity analysis performed to determine the 
response of solution fields to weights for each of the 
terms. 
 
3. METHODOLOGY 
 

In this analysis, the desired products for 2-m 
air temperature and surface pressure are synthesized 
from NCEP2 and ECMWF datasets only and for 10-m 
wind speed, 2-m humidity and sea surface temperature, 
are synthesized from NCEP2, ECMWF and satellite 
measurements. The functional to be minimized, F, is  
designed to combine the two/three datasets into a field. 
The general formula of functional F can be written as 

 
  F=αΣRn(X-Xncep2)2 + βΣRe(X-Xecmwf)2 +γΣRs(X-Xsatellite)2 
    +δΣ(∆X/∆t)2 + ε L4Σ(▼2(X-Xncep2))2            (1) 
  

The first three terms of F represent the misfit 
of the NCEP2, ECMWF, and satellite (for 10-m wind 
speed, 2-m humidity and sea surface temperature only) 
fields with respect to the solution field. The forth term is 
the time evolution and the fifth term is the Laplacian or 
smoothing term.  

Rn, Re, and Rs are the inversions of the error 
variance of NCEP2, ECMWF and satellite data 
respectively, and α, β, γ, δ, ε are subjectively 
determined constants. L is the length of one grid 
spacing, approximately 110 km. The error variances Rn, 
Re, and Rs are determined from monthly NCEP2, 
ECMWF and satellite data against the Southampton 
Oceanography Centre (SOC) global air-sea heat flux 
analysis data (Josey et al. 1998). The monthly SOC 
analysis was generated from the Comprehensive 
Ocean-Atmosphere Data Set (COADS) Volunteer 
Observing Ship reports and is available from 1980-

1997. The systematic error arising from variations in 
observing procedure for each individual ship 
meteorological report has been corrected. Validation 
studies indicate that SOC climatology are generally in 
good agreement with buoy measurements. In this 
analysis, SOC data are thus regarded as the �truth� 
data to obtain the spatial error variance of the NWP and 
satellite data. In the next section, SOC fluxes are also 
used as one of the reference datasets to validate our 
synthesis fluxes. The basin-scale patterns of Rn, Re, 
and Rs are basically similar to each other. For example, 
large variances of bulk variables from NWP and satellite 
data are generally found in the northern high latitudes 
and southern extratropical regions, where VOS ship 
data are sparse and NWP analyses are less reliable. 

Some criteria are used to determine the 
optimal weights of  α, β, γ, δ, ε, including sufficient 
weightings to retain the basin-scale pattern exhibited in 
NWP data, the quality of the input datasets as 
determined through comparisons to buoy data, and 
finally the sensitivity experiments. The values of the 
time evolution and spatial smoothing weights δ, ε are 
uniform for all grid points within the analysis domain. 
These weights are smaller in magnitude than α, β or γ 
in order not to distort the realistic temporal-spatial 
patterns of the bulk variables. 

In order to possibly account for the systematic 
errors of the input datasets in the direct minimization, 
we determine the values of α, β, γ, in such a way  that 
their individual products with the inversions of their 
corresponding  datasets� basin-averaged error variance 
(calculated from Rn, Re, and Rs  respectively) are 
proportional to the relative  strengths of those datasets 
as described in section 2. For example, the averaged 
10-m wind speed error variances for NCEP2, ECMWF 
and SSM/I are 0.59, 0.64 and 0.91 respectively. We 
therefore assign 20, 10 and 40 to α, β and γ, implying 
that on basin-scale the ECMWF winds have errors 
about 2 times larger than NCEP2 and 2.6 times larger 
than SSM/I. In other words, the values of the weights 
Rn, Re, and Rs  are expected to lead to the SSM/I data 
contribution  to the solution about the same as the sum 
of the contributions of NCEP and ECMWF data.  

The weights in Equation 1 are subjectively 
determined that can have a significant impact on the 
solution fields. Analysis of the sensitivity of the weights, 
that is, the change in the solution per change in the 
weight, provides hints in selecting suitable values. 
Sensitivity tests are therefore performed on each of the 
weights in the functional to understand the effects on 
the solution fields. Our survey indicates that generally 
there is a less than 1% change in solution fields for a 
10% change in our prescribed weights. The 10-m wind 
speed sensitivity test is shown next as an example. 

Figure 2 indicates that for a 50% increase in 
the weight of the SSM/I wind speed term, the solution 
linearly increases with the wind speed difference of the 
SSM/I and NWP. For a wind speed difference of 30% 
(98% of the grid points are within this value), the 
solution increases with the SSM/I weight (Figure 3). 
However, the weight increase becomes larger when the 
solution increase becomes smaller. The change in 



solution is quite small as response to the change in 
weight. As shown in Figure 3, for a presumed 
uncertainty of 100% in the weight, the �error� of the 
result reaches only 4%, about 0.4 m s-1 with monthly 
wind speed of 10 m s-1. These experiments indicate that 
the synthesized result is stable and our prescribed 
weights are acceptable.  

 
 
Figure 2. Relationship between the response of the 10-
m wind speed solution to the wind speed difference 
between SSM/I and NWP for the case of the SSM/I 
term weight increasing by 50%. Each dot represents a 
grid point in the Atlantic basin for January 1992. 

 

 
 
Figure 3. Response of the 10-m wind speed solution to 
the change in the SSM/I weight for the case of the wind 
speed difference between SSM/I and NWP equal to 
30%. 
 
4. RESULTS 
 

Using the technique described previously, 
daily fields of each of the 5 bulk variables at 1x1 grid 
are produced for the period 1988-1999. Daily surface 
latent and sensible heat fluxes are then estimated using 
the COARE2.6a flux algorithm.  Here we focus on air-
sea latent flux results. 

 

 



 
 

 
Figure 4. Annual mean latent heat flux (W m-2) for 1988-
1997 for our analysis result (a) in comparison with SOC 
(b), NCEP2 (c) and ECMWF (d) 
  

The basin-scale pattern shown in our analysis 
(Figure 4 (a)) is similar to those in SOC, NCEP2 and 

ECMWF. All the datasets demonstrate larger oceanic 
latent heat loss in the gulf stream and the subtropical 
trade belts. However, the NWP models show latent heat 
loss much larger than our analysis and SOC. the 
climatological latent heat loss in our analysis is very 
similar on basin-scale to SOC, which is likely to be 
reliable (Josey et al. 1999).  

Moored buoy data sparsely distributed in the 
Atlantic (Figure 1) are not synthesized in this analysis, 
and hence, are qualified to be used as the independent 
�ground truth� reference datasets for the validation. 
These buoy data are collected from deployments in 
different time periods of 1988-1999 . 
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 Figure 5. Comparison of buoy latent flux with flux 
from our analysis, NCEP2 and ECMWF at buoy sites 
shown in Figure 1. Unit: W m-2. 



 
In all the buoy experiments considered, our 

flux product is much closer to buoy measurements than 
NCEP2 or ECMWF. The NWP models are again seen 
to overestimate latent heat loss as we notice from the 
basin-scale comparison (Figure 4). It is noted from 
Figure 5 that our analysis has a larger deviation at the 
PIRATA buoy sites, which partly results from that fact 
that the 2-m humidity analysis (1995-1999) came from 
the dry-biased NCEP2 and ECMWF (in the tropics). 
(The PIRATA experiment started in 1998. The SSM/I-
derived humidity is available for 1988-1994 and is 
higher than the NWP humidity in the tropics).   

The improvement of our synthesis heat flux 
product over the NWP as described in Figures 4 and 5 
come from the less biased synthesis bulk variables and 
the use of the COARE2.6a algorithm (Zeng et al. 1998). 
At the buoy reference sites (Figure 1) where a strict 
validation can be conducted, the synthesized bulk 
variables particularly the 10-m wind speed and 2-m 
humidity are found to become more accurate in time-
mean values and their daily mean rms differences from 
buoy data become smaller than the NWP counterparts. 
 
5. SUMMARY 
  
 Daily surface turbulent heat fluxes in  the Atlantic for 
1988-199 are produced by applying the COARE2.6a 
flux algorithm to the bulk variables synthesized from 
NWP models and satellite measurements using the 
variational-direction minimization approach. The optimal 
weights in this objective analysis technique were 
selected based on existing knowledge of the 
strengths/weaknesses of the input datasets through 
comparing with in-situ data and on weight sensitivity 
tests. The validation with ship and buoy data indicates 
that the heat fluxes from our analysis shows significant 
improvement over the NWP fluxes. 
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