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1. INTRODUCTION 
 
 Seasonal forecasting for tropical regions, based 
on statistical and dynamical modelling approaches, is 
well-established (Goddard et al., 2001).  Prediction 
models have been developed for phenomena as 
diverse as Atlantic hurricanes (Lehmiller et al., 1997), 
the Indian Monsoon (Krishna Kumar et al., 1995) and 
Sahelian rainfall (Ward, 1998).  By comparison, the 
potential for seasonal forecasting in temperate 
latitudes is recognized to be lower (Lloyd-Hughes and 
Saunders, 2001).  Over Europe, recent work has 
emphasised the prediction of rainfall (Rimbu et al., 
2001; Lloyd-Hughes and Saunders, 2001) and the 
role of the North Atlantic Oscillation (Rodwell et al., 
1999).   
 As financial losses due to weather extremes 
escalate, there is growing interest from end-users, for 
example from forestry and insurance, in the 
development of seasonal forecasting models for 
weather extremes in temperate latitudes.  Here, we 
present results from a pilot project to explore the 
potential for seasonal forecasting of wind storm over 
Europe.   
 
2. THE WIND SPEED PREDICTAND  
 
 The study area covers northwestern Europe 
between 45oN to 65oN and 15oW to 25oE.  Over this 
region, the wind climatology varies substantially.  
Mean speeds increase from south-east to north-west.  
Superimposed on this pattern, speeds are highest in 
coastal areas and at high-altitude locations.  Against 
this background, we sought an approach which would 
generate useful predictions at the regional scale, 
whilst permitting spatial intercomparison of the results.  
To achieve this goal, the predictand variable was 
based not on absolute wind speeds, but on the 
number of exceedances of percentile thresholds.  By 
using a relative rather than an absolute measure, 
useful and comparable results are generated.   

The predictand variable time series were taken 
from six-hourly gridded (at a resolution of 2.5o latitude 
by 2.5o longitude) scalar wind speeds from the 
National Centers for Environmental Prediction (NCEP) 
reanalyses.  These data are now available from 1948 
to present.  This provided a readily-available 
homogeneous data source entirely appropriate for the 
exploratory purposes of a pilot project.  As a first step,  
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the daily maximum wind speed was selected from the 
four available values.  The resulting time series was 
used to compute from the 1961-90 normal period, for 
each grid point, the 90th, 95th and 99th percentile 
values.  Figure 1 shows the value of the 90th 
percentile wind speed for the 153 grid boxes in the 
domain.  A time series of the annual number of 
exceedances of this 90th percentile threshold is shown 
in Figure 2, averaged across all grid boxes.  These 
NCEP extremes suggest an overall increase in wind 
speed extremes over Europe in the last 40 years, 
accompanied by an increase in year-to-year 
variability.  The predictand variable was found by 
calculating the number of exceedances of each 
threshold during each long winter season, October-
March.  Damaging high winds may occur in any month 
in this period.   

 
 
FIGURE 2  Time series of the number of exceedances 
of the 90th percentile, averaged across all grid boxes 
in the domain. 
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 FIGURE 1  90th percentile wind speed (ms-1). 
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3. THE PREDICTORS 
 
 The candidate predictors are regional indices of 
sea surface temperatures over the Atlantic and 
eastern Pacific, together with a range of indices of the 
state of the atmospheric circulation.  Sea surface 
temperatures, largely because of their long time 
scales of variability compared to the atmosphere, are 
widely-recognized as offering potential predictability 
with lead times of a few months to a year (Goddard et 
al., 2001).  In addition, a number of authors report 
improvements in seasonal forecasting skill when 
atmospheric predictors are included (e.g., Francis and 
Renwick, 1998).   
 
3.1 Sea surface temperatures 
 
 The data set used was the global GISST 2.3b 
monthly estimates of sea surface temperature (SST).  
This is provided on a 1o by 1o grid from 1871 to 
present.  The predictor variables were identified using 
Principal Components Analysis (PCA), which requires 
that the number of variables (grid squares in this 
case) in the data set must be less than the number of 
cases (months).  To achieve this whilst considering a 
domain large enough to properly identify all patterns 
influencing European high wind occurrence, the SST 
data were interpolated onto a 5o by 5o grid over the 
Atlantic and Eastern Pacific from 100oW to 20oE and 
40oS to 70oN, giving 621 grid boxes. 
 The SSTs were normalized (mean of 0, standard 
deviation of 1) and deseasonalized before performing 
the PCA.  Rotation was not found to be necessary.  In 
order to identify significant modes, a number of tests 
have been proposed.  For example, the Kaiser 
criterion argues that all modes with eigenvalues 
greater than 1 should be considered.  Here, this would 
require consideration of 57 modes, too many to 
reasonably incorporate as predictor variables.  There 
are 21 modes which individually explain at least 1% of 
the variance.  Together, these 21 explain nearly 70% 
of the variance, as shown in Table 1.  We take this as 
a reasonable cutoff in terms of meaningful predictors.   
 
TABLE 1  Eigenvalues from the SST PCA 
 

Mode Eigenvalue % variance Cum. % 
variance 

1 49.64 12.14 12.14 
2 34.46 8.43 20.56 
3 26.70 6.53 27.09 
4 20.98 5.13 32.22 
5 18.92 4.63 36.85 
… … … … 
21 4.32 1.06 69.17 

 
3.2 Atmospheric indices 
 
 A number of indices based on atmospheric 
pressure have been identified as candidate predictors 
in the seasonal forecasting models.  Their association 

with European weather ranges from well-established 
(in the case of the North Atlantic Oscillation) to being 
tentative and the subject of research (Southern 
Oscillation Index). They were obtained from the web 
pages of institutions named below and are: 
• Arctic Oscillation (AO) from JISAO/University of 

Washington (JISAO/UW)1 
• East Atlantic (EA) from Climate Prediction Center 

(CPC)2 
• East Atlantic Jet (EAJ) from CPC2 
• East Atlantic/Western Russia (EAWR) from CPC2 
• North Atlantic Oscillation (NAO) from Climatic 

Research Unit (CRU)3 
• Quasi-Biennial Oscillation (QBO) from 

JISAO/UW1 
• Southern Oscillation Index (SOI) from CPC2 
They encompass a wide range of potential influences 
on Europe, as shown in Table 2.   
 As a first step, the time series of these indices 
were correlated with the wind speed exceedance time 
series for each grid box.  With one exception, this was 
carried out for simultaneous winter data, and also with 
the index time series leading the exceedance time 
series by one winter. The exception is the EAJ, which 
is a summer-active series, and for which only 
relationships with the summer preceding the winter 
exceedance values was explored.  The results for the 
NAO are shown in Figure 3. 
 

TABLE 2  Atmospheric indices tested as predictors 
 

Index At. 
circulation 

Active 
period 

Link to 
Europe 

AO Hemispheric 
westerly 
windiness 

Mostly 
winter 

Winter 
winds 

EA  Westerly 
windiness 
south of UK 

Mostly 
winter 

Winter SW 
winds 

EAJ Westerly 
windiness 
south of UK 

Summer Summer 
SW winds 

EA/WR Blocking over 
western 
Europe 

Winter, 
early 
spring 

Winter 
winds over 
mainland 

NAO North Atlantic 
westerly 
windiness 

Mostly 
winter 

Winter 
winds 

QBO Stratospheric 
winds 

Approx. 2-
year cycle 

Uncertain 

SOI Pressure 
difference 
Tahiti/Darwin 

3 – 7 year 
timescale 

Uncertain 

 

                                                 
1 http://tao.atmos.washington.edu/main.html 
2 http://www.cpc.ncep.noaa.gov/index.html 
3 http://www.cru.uea.ac.uk/ 



FIGURE 3  Correlations between October-March NAO 
and wind speed exceedances of the 90th percentile.  
Upper map: simultaneous data.  Lower map: NAO 
leads wind speed by one year. 

 
 

 
 Maps of lagged relationships for each of the 
atmospheric indices in Table 2 were inspected and, 
on the basis of this inspection, we were able to reduce 
the number of potential predictors in Table 2 to just 
four: 

• Arctic Oscillation  
• North Atlantic Oscillation 
• East Atlantic pattern 
• East Atlantic/Western Russia pattern 

The issue of multicollinearity in these indices is 
touched on in Section 4.  Together with the 21 
components from the PCA of SST, this gave a total of 
25 potential predictors.   
 
4. THE MODELS 
 

Three regression methods were tested as the 
basis for the seasonal forecasting models.  These 
were: 
a. Multiple linear regression (MLR).  This ‘standard’ 

regression method was rejected because of 
inherent assumptions and constraints  A 
particular problem here would be that the 

predictor variables should not themselves be 
correlated (multicollinearity). 

b. Partial least squares regression (PLSR).  This 
technique (Merola and Abraham, 2001) considers 
the variance structure of predictand(s) and 
predictors jointly.  It has a number of advantages 
for the purposes of this study, including that it: 
o can handle multiple predictands, 
o can accept more variables than cases and 
o uses eigenvector methods, such that 

multicollinearity is not a problem. 
c. Principal component regression (PCR).  This 

technique is very similar to PLSR, but the 
variance structure of the predictand and predictor 
variables are considered separately.  It requires 
fewer variables than cases. 

In addition, we considered canonical correlation 
analysis, which was found to be similar to a 
combination of PCR and MLR, but lacking the 
flexibility of PLSR.   

The y-variables to be predicted are exceedances 
of the 90th percentile of wind speed at 153 grid points 
over Europe, accumulated into annual winter series 
from October to March.  The predictor (x) variables 
are 4 atmospheric and 21 SST indices.  Thus, the 
MLR uses 25 predictors per grid square and the PCR 
optimises 25 predictors per grid square.  The PLSR is 
used both on a grid square basis, optimising 25 
predictors per grid square, and over the whole domain 
optimising 25 x 153 variables in one operation.  The 
whole-domain use of PLSR is about 200 times faster 
than the analysis by grid square.  A range of lags 
were tested, starting at 4 months and repeating the 
analysis with progressively longer lags at one-month 
increments.  This method gave an optimal lag at 10 
months, based on a cross-validated minimum PRESS 
(Prediction REsidual Sum of Squares).  Essentially, 
therefore, the exceedances are being predicted by a 
set of predictors drawn from the previous winter.   

In order to compare model performance, the root 
mean square error (RMSE) was computed between 
observed and predicted exceedances across all grid 
squares.  For the models with a lag of 10 months, the 
RMSE is: 

• 2231 for MLR 
• 1498 for PCR 
• 1421 for PLSR over the whole domain 
• 1365 for PLSR by grid square 

The ranked order of these values remains the same at 
all lags.  Thus, MLR is shown to be much inferior to 
PCR and PLSR. Also, the PLSR optimising both x and 
y variables provides better forecasts than the PCR, 
which took about 200 times longer. 
 Figure 4 shows predicted exceedances for the 
1999/2000 winter using PLSR on a grid square basis.  
The errors (observed minus predicted number of 
exceedances) are shown in Figure 5.  Although some 
grid points have very large errors, there are many 
regions where the forecast error is quite small. 
Generally, the model tends to underpredict in areas of 
high  wind  speed and overpredict where  wind speeds 



FIGURE 4  Predicted exceedances of the 90th 
percentile for the 1999/2000 winter using PLSR in 
grid-square mode. 
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FIGURE 5  Errors in the prediction of Figure 4, 
expressed as the number of exceedances, for the 
PLSR in grid square model. 
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FIGURE 6  Errors for the PLSR model for the whole 
domain for the winter of 1999/2000, expressed as the 
observed minus predicted number of exceedances. 
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are lowest. Comparison of Figures 5 and 6 (the latter 
showing errors for PLSR applied to the whole domain) 
suggests that the penalty for optimising predictor and 
predictand at the same time is relatively small. The 

analysis by grid square has less error in some areas 
but the patterns are very similar  
 
5. CONCLUSIONS 
 

The comparison of models in Section 4 suggests 
that the PLSR models generate the most accurate 
results in this application.  Although the PLSR model 
in grid square mode is superior overall, where 
computation time is a consideration it may well be that 
PLSR over the whole domain is to be preferred.   

The method of optimising used by PLSR over the 
whole domain offers further potential advantages.  As 
used here, it reduces the x and y variance to a single 
“latent variable” giving a minimum PRESS statistic.  
However, this is minimizing the error over all grid 
squares.  Experimenting with more latent variables 
could increase the error in some areas and reduce it 
in others. This approach could be used to minimise 
the forecast error for particular areas of interest at the 
expense of others.  
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