
J9.19
FRAMEWORK FOR A JAVA METEOROLOGICAL

CLASS HIERARCHY

Young Yee
Army Research Laboratory

Computational & Information Sciences Directorate
White Sands Missile Range, NM 88002

ABSTRACT

A framework for a Java™ meteorological class
hierarchy is proposed to implement object
oriented applications in the atmospheric
sciences. One of the recurring issues in the
management and handling of enormous
quantities of meteorological measurements is
formatting and processing of data from one
application into other applications. For example,
data received from various sources may need
special formatting or unit conversions before the
data can be properly used as input for a
mesoscale model. The major components and
functionality of the met class hierarchy will be
discussed and a specific implementation of data
processing using these classes will be
demonstrated.

1. INTRODUCTION

 The collection and management of enormous
amounts of meteorological data, including
satellite-based as well as ground-based
measurements, heavily taxes computer
resources and presents great challenges in the
optimal usage of this information. To address
these issues, object oriented technology has
become increasingly important. To many scientist
and engineers the task of retrofitting legacy
computer models that are used operationally can
be very daunting. In many cases, there is no
easy method to convert legacy procedural
computer code to object oriented architectures.
 With the proliferation of meteorological data
formats , the reformatting and processing of data
as input into existing models is fast becoming
unmanageable. Traditional complex models
typically require very precise formatted data
where physical units must be exact. This
methodology is prone to human error and if the
programmer changes the input format, errors can
be difficult to trace. A properly designed
architecture should take advantage of repeatable
patterns. In object oriented terminology, these
reusable templates are referred to as “classes”.

* Corresponding author address: Y. Yee,
Army Research Laboratory,
White Sands Missile Range, NM 88002-5501
E-mail: yyee@arl.army.mil

2. PROBLEM AREAS

In atmospheric modeling development,
programming issues that hinder reuse and
portability of code are as follows:
 - Lack of a standard Met packages for commonly
 used routines
 - Need for simplification of current model codes
 - Need for more compact & specific met
 applications
 - Lack of object oriented designs
 - Integration of legacy code
 - Complex and confusing data formats
 - Need for more graphical tools to view and
 plot met data
 - Specialized databases with custom interfaces
 - No cohesive top down structure for finding
 met applications

3. TOP-LEVEL JAVA MET CLASS HIERARCHY

 One of the challenges in management and
processing of large meteorological data sets is
the development of techniques and
methodologies that permit code to be reusable
and data to be shared and distributed, without
dependencies on operating systems or computer
hardware. To address these issues of sharing
and platform independence, we propose a top
level class hierarchy for meteorological
applications. Figure 1 illustrates important key
java met packages. In many cases, researchers
have initiated extensive development in certain
object oriented applications (Murray, 2001) which
might fall under one or more of these categories.
We provide brief descriptions of each package
with a summary of the intended functionality.

Upper Level Java Met Classes:

 MetModels – a set of classes that address
meteorological computer models from the very
simple one-dimensional models to complex
models but with modularity in the early design.
 MetParam - a set of classes that addresses
meteorological parameters and their attributes
such as physical units, dimensionality (single
value or multi-dimensional arrays), accuracy of
measurement, upper and lower limits, and
application specific usage.

 MetNet - a set of classes and interfaces for
performing meteorological network operations
including acquiring data directly from met sensors
or from data sources available on the Internet.
 MetSensors - a set of classes that addresses
the different meteorological sensors and their
characteristics. Calibration methods may be
included in these classes.
 MetIO - a set of classes that addresses
meteorological data inputs and outputs and file
handling.
 MetData - a set of classes and subclasses to
address met data structures and physical units.
These classes should have methods to handle
different forms of data structures as well as
different dimensionality of parameters. Other
related classes should include MetMath,
MetConvert, and MetFormat to perform data
format conversions, interpolations, statistics, unit
checking, etc. Compression algorithms may fall
under this category or under a MetUtil package.
 MetMath - a set of classes and interfaces that
contain methods to handle mathematical
calculations of meteorological parameters as well
as methods to perform linear regression analysis,
data statistics, interpolations in time and space,
and general math functions
 MetFormat - a set of classes and interfaces
that addresses the overwhelming data formats
that exist for different meteorological applications.
Major subclasses should handle imagery data
formats, which are computationally expensive to
process, and data storage issues.
 MetDB - a set of classes that addresses
meteorological databases. The classes should
have search methods for particular databases,
documentations to describe the different
databases, and methods to extract and query
external databases.

 MetGraph - a set of classes and interfaces
that addresses meteorological graphical
representations, 1D to 4D plots of met
information, data formats for specialized
graphical software products, and visualization of
met data. Visualization of large data sets for
quality control of met information is an important
issue.
 MetGUI - a set of classes and interfaces to
provide graphical user interfaces to handle user
inputs and requests for specific met data and for
model processing options. Other uses could be
interactive controls on graphical displays.

 An additional package that could be defined is
a MetSecurity package to address security
access to meteorological information and models.
These classes will have methods to discriminate
and handle different users such as government
personnel versus contractors versus foreign
nationals.

4. SAMPLE ILLUSTRATION

To illustrate the applicability of the defined met
packages, figure 2 shows different packages that
would be used in the processing of a mesoscale
model to forecast the weather (Kirby, 2001). In
this scenario, NOGAPS (Navy Operational Global
Atmospheric Prediction System model) data is
used to initialize the mesoscale Battlefield
Forecast Model (Henmi, 1996). Note that certain
packages are used both before and after the
mesoscale model execution. Depending on the
graphical tools used, METFORMAT classes may
be required to reformat model outputs into
graphical inputs. Efficient, modular coding to
promote reusability of code is encouraged.

Figure 1. Top Level Java Met Packages

5. CLOSING REMARKS

The advantages of defining a top level
architecture for Java Met Classes are as follows:
* Applications can be easily located
* Commonality between applications can
 be identified
* Reuse of modular code can be realized
* Standard terminology can be established
 especially met parameter nomenclature
* User interfaces can be customized for
 specific types of met models
 To address data discovery issues, the
JavaSpaces™ service specification (2000) may
provide a distributed persistence and object
exchange mechanism for meteorological
information and processing. Meteorological
objects can be written as entities that provide a
typed grouping of relevant meteorological fields.
A met client might perform simple operations on
a JavaSpaces service to write new
meteorological entries, lookup existing met
entries, and remove met entries from the space.
The idea of persistence is that a collection of data
remains intact in the Java space even if its
source of origin is no longer attached to the
network.
 Torres (2001) presents a generic model
designed to serve as a blueprint for development
of scalable distributed-computing applications. It
can be adapted to support various
communication protocols. The strength of this
basic model lies in the effective use of Java's
interface facility. Basically, this model illustrates

the interface's ability to provide multiple
definitions for a declared base set of methods
(polymorphism). Through the interface facility, an
application can scale several levels deep and be
used to developed sophisticated applications.

6. ACKNOWLEDGEMENTS
 The author gratefully acknowledges Brian
Malloy, Mario Torres, David Marlin, James
Brandt, Teizi Henmi, Steven Kirby, Edward
Measure, and James Cogan for their invaluable
contributions.

7. REFERENCES
 Henmi, T. and R. E. Dumais, “Description of
the Battlescale Forecast Model,” US Army
Research Laboratory, White Sands Missile
Range, NM, ARL-TR-1032, 1996.
 JavaSpaces™ Service Specification, Oct
2000,SUNMicrosys,java.sun.com/products/javas
paces.
 Kirby, S. F. Y. Yee, P. Haines, T. Henmi, B. A.
Malloy, “Exploiting The Internet To Automate The
Execution Of Mesoscale Models”, 17th

International Conference on Interactive
Information Processing Sciences (IIPS), AMS,
14-18 Jan 2001.
 Murphy, D., C. Murphy, “Community Software
Design: The Unidata Java-Based Metapps
Project”, 17th International Conference on
Interactive Information Processing Sciences
(IIPS), AMS, 14-18 Jan 2001, 367-368.
 Torres, Mario A., “Developing Scalable
Distributed Applications: A generic model
implemented in Java”, Dr. Dobb's Journal, Sept
2001.

Figure 2. Example of reusable design for mesoscale computer modeling.

	J9.19
	FRAMEWORK FOR A JAVA METEOROLOGICAL
	CLASS HIERARCHY

