
1 . INTRODUCTION

For the past decade, the National Oceanic and
Atmospheric Administration’s (NOAA) National Weather
Service (NWS) has worked toward utilizing the latest
accomplishments in computer technology through its
massive modernization effort. A component of the
modernization, the Advanced Weather Interactive
Processing System (AWIPS), allows NWS forecasters
to display and combine a variety of meteorological
datasets on a single display. Now that AWIPS is in use
operationally, the NWS personnel are turning their
attention to modernizing the set of products and
services delivered to the public. The Interactive
Forecast Preparation System (IFPS), being developed
jointly by the NWS’s Meteorological Development
Laboratory and NOAA’s Forecast Systems Laboratory
(FSL), is a software component of AWIPS that allows
NWS forecasters to define weather forecast elements
in a gridded digital format. Products based on these
digital grids can take many forms including the typical
text−based products the NWS issues today, graphical
representations that can describe the weather more
precisely, and the gridded data per se for customers
that require the maximum detail (LeFebvre et al. 1996).

2. Graphical Forecast Editor

For nearly a decade, FSL, guided by NWS field
forecasters, has been developing the Graphical
Forecast Editor (GFE), which is the forecast grid−
editing component of IFPS. Using the GFE, forecasters
manipulate gridded values of surface−based sensible
weather elements such as temperature, dew point, and
wind that define the future state of the atmosphere.
Hansen et al. (2000) discusses the methodology
forecasters employ to modify these grids. The GFE
consists of a set of editors, each with its own set of
tools that modify the gridded data. The Spatial Editor
furnishes tools to edit the grids in a plan view or map
format. The Temporal Editor contains displays in time−
series format along with tools to modify the grids
temporally. The Grid Manager provides tools to
manage the grid inventory, perform time interpolation,
and initialize the forecast based on numerical model
output.

About two years ago, with the essential components of
GFE complete, we turned our attention to developing a
set of sophisticated tools that enforced a particular

1Corresponding author’s address: Tom LeFebvre,
NOAA Forecast Systems Laboratory, 325 Broadway
R/FS6, Boulder, CO, 80305;
e−mail: lefebvre@fsl.noaa.gov

meteorological law or concept. These new "Smart
Tools" were required to work effectively during all
seasons in disparate climate regimes. Many tools
would need to be customized to each local forecast
area, further adding to the challenge.

The solution was not to develop a set of tools, but a
framework within which forecasters, researchers, and
software developers could employ their own ingenuity
to invent their own tools. LeFebvre et al. (2000)
describes this Smart Tool framework. This type of
extensible architecture offers several advantages:

� An enormous amount of communication would need
to take place between field forecasters and
developers in order to develop an efficient set of
editing tools, if developers were responsible for
writing them. This communication has been shown to
be very time−consuming and greatly slows the
process of developing effective software. The need
for this communication is greatly reduced once
forecasters are allowed to write their own tools.

� No matter how tools are developed, local forecasters
will need to modify them because of local
climatological and topographical effects. The Smart
Tools framework gives forecasters complete control
over every tool.

� The editing system can be easily extended without a
major redesign and thus is able to adjust to new
requirements quickly and with minimum effort.

� Most important, these Smart Tools encapsulate
some meteorological concept or rule of thumb from
the human knowledge−base at the local forecast
office. The tools may be easily shared among
colleagues in other forecast areas. With each of
dozens of forecasters contributing a piece of weather
knowledge, we can quickly build a large library of
tools that when combined, allows forecasters to
express complex meteorological concepts to the
editing system (GFE), which then performs the
complex task of calculating the actual weather values.

Recently, the Smart Tool framework concept has been
extended to another area of GFE development. In
order to quickly populate a gridded forecast, the GFE
requires algorithms that transform numerical weather
prediction models, such as Eta, into grids of surface
sensible weather elements. We call this set of
algorithms Smart Initialization. It should be noted that
the word "initialization" used here does not mean
defining and balancing the initial state of the

 INITIALIZING GRIDDED FIELDS FROM NUMERICAL MODELS

T. LeFebvre1, M. Romberg, T. Hansen

NOAA Research−Forecast Systems Laboratory

Boulder, CO

atmosphere within a numerical model. Rather, we use
it to describe the process of populating an undefined
gridded forecast database with weather values
consistent with a particular numerical model. These
Smart Initialization algorithms are described in detail in
the sections to follow.

3. SMART INITIALIZATION

The gridded forecast database comprises hundreds of
grids that define the state of the atmosphere for
particular weather elements over a specified time
period. As time marches forward, these grids
eventually expire when their forecast valid time passes.
Relative to the current time, grids can be thought of as
moving, since their valid times get perpetually closer to
the current time. We call this type of database a rolling
database.

Generally forecasters using the GFE start with the
current forecast and then make nominal adjustments
using simple tools or the Smart Tools briefly described
above. This way they can take full advantage of the
work done by their predecessors who worked earlier
forecast shifts. As the rolling database moves forward,
an undefined time segment will be created during the
latest time periods. For example, grids valid seven
days from now will be eventually six days away, leaving
an unspecified 24−hour time segment in the six to
seven day forecast period. Forecasters could use the
tools available to draw these grids by hand, but doing
so is very tedious and time consuming, particularly in
forecast areas with complex terrain.

Occasionally, for a variety of reasons, a forecaster’s
opinion may sharply deviate from the current forecast.
Clearly, forecasters will not have the time to create all
of the grids by hand in time to meet product deadlines.

In order to provide forecasters with a good starting
point when populating an empty forecast period, we
built a program that creates surface−based sensible
weather grids based on numerical model output. Using
such a program, forecasters can "initialize" their
forecast based on the numerical model of their choice.
This allows them to quickly populate their "empty"
forecast with reasonable values, such that the weather
elements are internally consistent, e.g., clouds in areas
of rain. Unfortunately, numerical models do not
generally produce fields of sensible weather at the
surface. In addition, these models run at coarser
spatial resolution (40−80 km) when compared to a
typical GFE resolution (less than 5 km).

The GFE has employed this technique for the past
several years (Wier 1998) but the method by which the
original algorithms were implemented had some
significant drawbacks. Previous versions of Smart
Initialization were written in C++. This demanded that
we develop and compile the algorithms in a
development environment. This technique offered no

method for forecasters to modify or adjust these tools
once they arrived at the local office. Even the simplest
suggestion from forecasters required many months
before the modified code could be delivered to them
because of the elaborate code management system
imposed on all AWIPS software.

The solution to this problem was to implement the
algorithms in a way that forecasters could modify them
based on their meteorological knowledge of the local
climate regime. That way forecasters themselves had
the opportunity to immediately implement any new
idea, thus eliminating the long turn−around time
required by the old precompiled method. We chose to
implement the Smart Initialization algorithms in a
programming language called Python. Python is an
"interpreted" language, which means it is executed
line−by−line and does not require compiling. In
addition, Python’s syntax is very easy to read and
learn; forecasters with any programming experience
can learn it quickly.

Interpretive languages such as Python also have their
drawbacks, however. The fact that interpretive
languages are compiled at execution time generally
means that they execute slowly, and Python is no
exception. The extensive numerical calculations
required by many of the algorithms meant that
forecasters had to wait several minutes per operation in
some cases, before the results were ready.

Recently, the performance issue has been greatly
alleviated by employing an extension to Python called
Numerical Python.2 This package operates on entire
grids in a single step rather than iterating over every
grid point. The result is that the same algorithm runs
up to 20 times faster when implemented in Numerical
Python.

With many of these problems solved, we created Smart
Initialization algorithms to convert model output into
surface−based weather elements. In the following
sections, we document each of the 17 different weather
element algorithms in varying detail. In many cases the
algorithm is somewhat dependent on the particular
model used, since some models do not offer the same
output parameters, especially near the earth’s surface.
Since space is limited, we will document a few
algorithms in detail, and briefly describe the rest.

4. INITIALIZING SURFACE WEATHER ELEMENTS

4.1 Wind

Wind is one is one of the simpler tools since the
algorithm extracts the 10 m wind from the model and

2 Numerical Python was designed and implemented
by a group at Lawrence Livermore National
Laboratory. For more information, see the
Numerical Python web site at:
http://www.pfdubois.com/numpy

then just performs a unit conversion. The Numerical
Python code for this is shown below.

 def calcWind(self, wind_FHAG10):
 mag = wind_FHAG10[0] # extract the magnitude
 dir = wind_FHAG10[1] # extract the direction
 mag = mag * 1.94 # convert from ms−1 to knots
 dir = clip(dir, 0, 359.5) # confine direction values
 return (mag, dir)

Note: FHAG refers to fixed height above the ground, in
this case, 10 meters.

4.2 Temperature

Most models produce temperature near the surface (2
meters) but the coarse resolution of most models
produces only smooth representation of the surface
temperature. Using a high−resolution topography
dataset, we can add detail to the model’s temperature
forecast by adjusting the values based on elevation.

Figure 1 illustrates that the model topography can
greatly deviate from the "true" topography as extracted
from the GFE’s 1−km resolution dataset. Inside the
temperature algorithm, we calculate this difference as
well as the model temperature lapse rate to determine
a more precise temperature value. The result is a
detailed temperature grid that more closely follows the
terrain.

The Python code for this algorithm is shown below.

def calcT(self, t_FHAG2, t_BL3060, stopo, topo):
 # Determine the lapse rate between 2 meters and
 # the 30−60 mb above ground layer in deg / millibar
 # using a form of the hydrostatic equation
 dz/dp = 287.04 * t_FHAG2 / (p_SFC / 100 * 9.8)

30 − 60 mb layer averages 45 mb above the sfc
dz = dz / dp * 45

 lapse = (t_FHAG2 − t_BL3060) / dz

Calculate the true temp. by multiplying the
lapse rate by the difference in topography
t = t_FHAG2 + lapse * (stopo − topo)

Convert from Kelvin to Fahrenheit and return
return self.KtoF(t)

4.3 Mixing Height

The mixing height algorithm calculates the potential
temperature as a function of height. Then it calculates
a running average of potential temperature from the
ground upward. When the environmental potential
temperature exceeds the running average by some
threshold, a precise mixing height is interpolated.
Figure 2 illustrates this method.

def calcMixHgt(self, T, topo, t_c, gh_c):

 # Make a mask for above ground
 mask = greater_equal(gh_c, topo)

 # Make a potential temperature sounding cube
 pt = []
 for i in xrange(len(self.pres)):
 p = self._empty + self.pres[i]
 tmp = t_c[i] * pow((1000 / p), 0.286)
 pt = pt + [tmp]
 pt = array(pt)

 # Zero out below ground
 pt = where(mask, pt, 0)

 # Get the running average of the pot. temp.
 avg = add.accumulate(pt, 0)

Figure 1: This figure conceptually illustrates
the difference between the model topography
and the 1 km true topography dataset.

Figure 2: The diagram illustrates that the Mixing
Height algorithm is calculated by generating a
potential temperature profile as a function of height
and finding the level at which it deviates from the
surface potential temperature.

 count = add.accumulate(mask, 0)
 mh = self._minus

 # Go through sounding cube and get a running avg.
 for i in xrange(1, avg.shape[0]):
 runavg = avg[i] / (count[i] + .0001)
 diffpt = pt[i] − runavg

 # Perform a linear interpolation to get a mixing ht.
 tmh = self.linear(pt[i], pt[i−1],
 gh_c[i], gh_c[i−1],runavg)

 # Assign mixing height at first point where
 # there is a difference of more than 3 between the
 # running average and the potential temperature
 mh = where(logical_and(logical_and(mask[i],
 equal(mh, −1)),greater(diffpt, 3)), tmh, mh)

 # Convert to feet AGL
 return (mh − topo) * 3.28

4.4 Maximum Temperature

The maximum temperature algorithm calculates the
maximum value found in all temperature grids that
overlap the time period of interest.

4.5 Minimum Temperature

The minimum temperature algorithm calculates the
minimum value found in all temperature grids that
overlap the time period of interest.

4.6 DewPoint

This algorithm calculates the mixing ratio from the
surface temperature and relative humidity, then
determines the dew point from the calculated surface
temperature and mixing ratio.

4.7 Quantitative Precipitation Forecast

The QPF algorithm uses the total precipitation grid from
the model and converts units to inches.

4.8 Sky Cover

The Sky Cover algorithm calculates a sky layer
coverage at each model level based on the relative
humidity. Then it integrates these levels to produce
total sky coverage by calculating the amount of clear
sky obscured by each level. For example, if one level
has 50% coverage and other has 50% coverage, then
the total sky cover is 75%.

4.9 Probability of Precipitation

This initialization tool uses the model’s total
precipitation to calculate the PoP using a linear scale.
Where the total precipitation is less than 0.02 inches

and there is a high mean relative humidity PoP values
are increased slightly. Figure 3 graphically depicts this
function.

4.10 Freezing Level

To calculate freezing level, this algorithm searches
vertically for the first occurrence of the model
temperature that is below freezing, and interpolates
downward to determine the "actual" level of the
freezing temperature.

4.11 Snow Amount

The Snow Amount tool calculates a snow ratio based
on the surface temperature. In areas that are 1000 feet
or greater above the freezing level, the snow amount is
the QPF multiplied by the snow ratio. In areas below
1000 feet of the freezing level, the snow amount is
assigned a zero value.

4.12 Haines Index

The Haines Index algorithm uses the temperature and
relative humidity fields to calculate dewpoint at 500 mb
and 700 mb, and, from this, calculates the Haines
Index.

4.13 Free Air Wind

The Free Air Wind tool interpolates between wind
values (calculated from the u and v components) at
model levels to obtain a value at 3000 feet above the
surface.

4.14 Transport Wind

The Transport Wind method calculates the average
wind in the layer bounded by the surface and the
mixing height. If there is no mixing height, then the
wind grid is zero.

Figure 3: The diagram graphically depicts the function
used to calculate Probability of Precipitation based on
the Quantitative Precipitation Forecast (QPF).

4.15 Weather

The Weather algorithm is responsible for defining the
weather type, coverage, and intensity. To accomplish
this, it uses the total precipitation and convective
precipitation grids to calculate the convective
precipitation ratio, which in turn is used to determine
whether shower or stratiform precipitation is expected.
The model’s lifted index is used to determine the
likelihood of thunderstorms. The surface temperature
determines whether the precipitation type is rain or
snow.

4.16 Chance of Wetting Rain

This is similar to the PoP algorithm (see above) in that
it uses the total precipitation but with different
thresholds.

4.17 Lightning Activity Level

Starting at zero, the LAL is increased by one for each
of the following conditions that are true:

� ratio of convective precipitation to stratiform is
greater than 50%

� midlevel (~500−600 mb) moisture is high and
accompanied by dry air at the surface

� lifted index is less than −3
� lifted index is less than −5

5. CONCLUSION

Smart Initialization provides forecasters complete
control over the algorithms that calculate surface−
based sensible weather elements from a numerical
model. The framework also gives forecasters an
opportunity to contribute their meteorological
knowledge to the gridded forecast system (GFE). The
use of Python permits the kind of flexibility that is
needed in NWS field offices. The Numerical Python
extension increases the performance of these
algorithms to an acceptable level.

In the near future, we plan to implement a verification
facility which will allow forecasters to evaluate the
accuracy of these algorithms, providing valuable data
critical to improving these algorithms. We invite
anyone with suggestions for new algorithms to contact
the main author at the postal address or e−mail
address listed on the first page of this paper.

6. REFERENCES

Hansen, T. L., M. Mathewson, M. Romberg, 2000:
Forecast Methodology using the GFESuite. Preprints,
17th International Conference on Interactive
Information and Processing Systems for Meteorology,
Oceanography, and Hydrology, Albuquerque, NM,
Amer. Meteor. Soc.

LeFebvre, T.J., C. Bacco, and M. Romberg, 1996:
Gridded Forecast Products and Services Under
Development at FSL. Preprints, 15th Conference on
Weather Analysis and Forecasting, Norfolk, VA, Amer.
Meteor. Soc.

LeFebvre, T. J., M. Mathewson, T. Hansen, M.
Romberg, 2000: Injecting Meteorology into the
GFESuite. Preprints, 17th International Conference on
Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology,
Albuquerque, NM, Amer. Meteor. Soc.

Wier, S.K., 1998: Surface Forecast Guidance Made
from Numerical Models. 16th Conference on Weather
Analysis and Forecasting, Atlanta, GA, Amer. Meteor.
Soc.

