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1. INTRODUCTION 
 
      Low visibilities due to fog can have hazardous 
affects on human life.  Surface transportation is one 
activity that is most affected by fog.  For instance, the 
National Highway Traffic Safety Administration’s 
(NHTSA) Fatality Analysis Reporting System (FARS) 
reports that in 1994 the total number of fatal motor 
vehicle accidents was 36,799.  Fog related fatal 
accidents accounted for 613, or 1.67% of the total 
number of crashes.  With the cost of motor vehicle 
crashes in 1994 being $150.5 billion (NHTSA), the 
associated cost due to fog can be assumed to be 
approximately $2.5 billion in 1994.  Thus, fog has 
damaging affects socially as well as financially. 

Fog forecasting focused on surface transportation 
may help reduce the number of motor vehicle accidents 
sustained per year.  In this study, the feasibility of using 
artificial intelligence methods to aid in fog forecasting 
for surface transportation is explored, namely case-
based reasoning (CBR) and rule-based reasoning 
(RBR).   
 
2. ARTIFICIAL INTELLIGENCE 
  

“Artificial intelligence (AI) technology provides 
techniques for developing computer programs for 
carrying out a variety of tasks, simulating the intelligent 
way of problem solving by humans” (Krishnamoorthy 
and Rajeev, 1996).  Many scientific domains have 
benefited from AI, ranging from medicine to automobile 
design.  RBR (often called expert systems) and CBR 
are areas of AI that employ ways humans solve 
problems.  RBR reasons about a set of rules, created 
by the domain expert, to reach a conclusion about a 
specific problem.  It basically attempts to emulate a 
domain expert.  CBR, on the other hand, “remembers” 
back to cases similar to the current case to find a 
solution.  This method assumes that similar problems 
have similar solutions and that problems an agent   
encounters tend to recur (Leake, 1996). 
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3. FOG FORECASTING 
 

One of the most challenging meteorological 
parameters to forecast is the formation of fog.  Some 
current models forecast fog by using regression 
equations (NGM & AVN MOS), while other models 
parameterize some of the variables that are necessary 
for forecasting fog (RUC). In a study by Meyer et. al., 
verification statistics show an improvement over 
persistence for NGM model’s MOS. 

AI is an area of cognitive science that has been 
utilized somewhat in weather forecasting. There have 
been a few studies using AI in fog forecasting research.  
Bjarne Hanson's work (2000a, 2000b, 1998) on CBR in 
weather forecasting inspired this work this paper 
presents. He was able to conclude that “querying a 
large database of weather observations for past 
weather cases similar to a present case using a fuzzy k-
nearest neighbors (fuzzy k-nn) algorithm that is 
designed and tuned with the help of a weather 
forecasting expert can increase the accuracy of 
predictions of cloud ceiling and visibility at an airport” 
(Hanson, 2000a). Peak and Tag (1989) created an 
expert system for the prediction of maritime visibility 
obscuration. Their system (AESOP) has 232 rules and 
has been designed in terms of nowcasts (0-1 h) and 
forecasts (1-6 h). They claim AESOP's overall 
performance is 75% correct and displays considerable 
forecast skill when compared to 47% for persistence 
and 41% for random chance.  

While fog forecasting has seen reasonable 
research efforts from the scientific community, current 
observation systems in place across the U.S. limit the 
forecasting accuracy that can be achieved.  This 
warrants the need to look to other ways for forecasting 
fog.  The current research efforts described in this 
paper are designed to create a fog forecasting system 
that utilizes AI technology and is tailored to the highway 
transportation industry. 
 
4. WORK IN PROGRESS 
 

Currently, the procedures in place in the CBR 
system include two main parts: case comparison and 
case adaptation.  In the first part of the system, cases 
are compared to the current case to determine 
similarity.  In the second part, cases deemed similar are 
adapted to create a forecast.  The two archived 
datasets used in the system were prepared by the 
NCDC: “TD-3280”, which is the 1984 and later dataset, 



and “TDF14”, which is the pre-1984 dataset going as far 
back as 1938 for some sites. 
 
4.1 Case Comparison 
 

As expected, case comparison takes quite a bit 
longer to complete versus case adaptation with the 
current algorithms in place.  Currently, cases are 
accessed according to the date of the current case.  
The archived cases must be within one month of the 
current case.  This is the only filter in place before case 
comparison.  Next, the system compares the past x 
hours of the current case to the same times of each 
archived case.  The variables compared currently in the 
system are as follows:  

• Surface air temperature 
• Surface dew point depression 
• Surface wind speed 
• Surface wind direction 
• Mean sea-level pressure 
• Mean sea-level pressure tendency 
• Current visibility 
• Current precipitation 
• Cloud coverage 
• Cloud height 

Similarity is determined by using fuzzy logic in a 
manner similar to that used by Hanson (2000a).  Each 
variable has its own membership function, which is 
dependent upon what is “similar” in regards to fog 
forecasting for each variable.  Figure 1 is an example of 
a membership function. In fuzzy logic, objects have a 
membership in a set according to a membership 
function.  Instead of the traditional methods, which state 
that an object is either a member (1) or not (0), fuzzy 
logic allows degrees of membership [0,1].  In the CBR 
 

 
 Fig. 1: Fuzzy membership function for temperature. 
 
system, compared variables are most similar if they 
achieve a fuzzy membership value of 1 and least similar 
if their value is 0. The similarity is determined for each 
hour for each variable.  Below is an example of the 
similarity computed for hours 0 (initial hour) and 1 hour 
before.   
 
hour 0     hour –1   
Temperature 0.95 Temperature 0.7
Dew Pt. Dep. 0.85 Dew Pt. Dep. 0.8
Wind Speed 0.9 Wind Speed 0.9

Wind Dir. 0.65 Wind Dir. 0.6
MSLP 0.95 MSLP 0.9
MSLP Tend.  0.8 MSLP Tend.  0.45
Visibility 0.8 Visibility 0.8
Precipitation 1 Precipitation  1
Cloud Cover 0.7 Cloud Cover 0.4
Cloud Height 0.75  Cloud Height 0.75
MIN 0.65 MIN 0.4
Table 1: Example of similarity calculations for the initial 
hour and 1 hour prior.   
 

Each variable has its own fuzzy membership in the 
fuzzy set “similar.” As described by Hanson, the 
minimum of the similarities is kept; this is called a fuzzy 
intersection of those fuzzy sets.  The variable whose 
membership value is the lowest can be described as 
the “weakest link” for that hour since the minimum is 
kept.  This is done for all hours that are used to 
determine similarity.  Currently, the previous 6 hours are 
used although the system is configured to use a 
maximum of 24 hours. 
  The last step in determining a case’s similarity is 
the use of the “forgetting function” (figure 2) as termed 
by Hanson.  The use of this function helps to show 
leniency to cases whose earlier hours (hour –4,   –5, –
6) are not very similar.   
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  Fig. 2: Forget function for hours 0 through -6. 
 

To calculate the final case similarity, the forget 
function is “maxed” with the current case similarity in 
what fuzzy logic calls a fuzzy union.  This helps in not 
using low similarities that earlier hours may have in 
similarity calculations since the most recent hours are 
the most important. 
 

hr 0 hr -1 hr -2 hr -3 hr -4 hr –5 hr -6 
0.65 0.4 0.45 0.5 0.45 0.25 0.3 

0 0.02 0.1 0.22 0.4 0.6 0.78 
0.65 0.4 0.45 0.5 0.45 0.6 0.78 

       
MIN = 0.4 Overall Case Similarity = 0.4 
Table 2: In Row 2 are the similarities, in row 3 are the 
forget function’s values and in row 4 are the “maxed” 
values. 
 



Once the forget function has determined the 
similarity for each hour (row 4 in table 2), the overall 
case similarity is determined by the fuzzy intersection 
(min) of all the time period’s values.  
 
4.2 Case Adaptation 
 

After the overall similarity is determined for each 
case, there is still the process of adapting those similar 
cases to the current situation to forecast fog.  There are 
a couple of methods currently investigated.  One way is 
to use the mean of the observations, according to their 
similarity, to create the forecast output. This method 
would be useful if the resulting cases are in relatively 
good agreement. There are a couple of cons associated 
with this method. First of all, if the system has accessed 
10 cases that it deemed “most similar” and some of 
those cases have fog while others do not, then the 
mean of the visibility range would not be an accurate 
representation of the visibility reduction possible. For 
example, suppose the observations for a given hour 
across retrieved cases are: 10 miles, 10 mi, 5 mi, 0.25 
mi, 0.5 mi, 15 mi, 7 mi, 5 mi, 0.75 mi, and 3 mi. The 
mean of the observations would be 5.65 miles.  A way 
to sidestep this problem would be to return the earliest 
and latest time that fog occurred (reducing visibility 
below 0.6 miles). 

A second way of utilizing the retrieved cases would 
be to return the minimum visibility that was experienced. 
Also, a probability of visibility dropping below a certain 
criteria (1 mi, 0.25 mi) could be extracted. In the 
example above, the minimum visibility was 0.25 and the 
probability of that happening could be assumed to be 
10% since that is what occurred in 10% of the most 
similar cases. For visibilities < or = 1, the probability 
would be 30%. This form of information would be 
helpful, but not ideal. Also, this information could be 
weighted according to the similarity.   

The two adaptation methods described above are 
methods that could be used for each airport observation 
site and the area in the vicinity of the airport.  But that is 
not the goal of this research.  The next step in this study 
is to use those forecast sites and the archived data that 
are available to forecast for highways across the U.S.  
This poses to be a challenge but there are a few ways 
that this can be done.   

1) Calculate a statistical relationship. Use at least 
a couple years of data from Roadway Weather 
Information System (RWIS) sensors, or other 
densely populated weather sensors along 
highways, and create a statistical relationship 
(linear regression) with regards to fog between 
the airports and RWIS sensors. 

2) Use topography to assign airport sites’ 
(historical) data to a grid point of similar 
topographical influences. 

3) Use a set of rules (RBR) to describe when a 
grid point should use what airport’s (historical) 
data. 

4) Do an objective analysis of the data. 
 
 
 

5. FUTURE WORK 
 

Future work includes the incorporating of other 
variables into the CBR system.  Other variables 
considered include (where low level means 950 to 850 
mb): 

• Soil Moisture 
• Low level dew point depression 
• Low level wind speed 
• Low level wind direction 
Other work that is scheduled to be done is an 

investigation into how RBR can be used to forecast fog 
across the U.S.  A RBR system would need to have 
rules that are unique for a given uniform area, have 
rules that cover the entire problem domain, and return a 
fog probability and/or visibility range.  A RBR/CBR 
hybrid may be beneficial if stand-alone systems do not 
prove beneficial. 
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