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INTRODUCTION* 
 

Amite River basin, in central and 
southeastern Louisiana, has exhibited a persistent 
flooding problem for several years, particularly in 
East Baton Rouge parish where about 42 per cent 
of the land area is within the 100-year flood plain.   
Recently, several severe floods occurred (1983, 
1989, 1990, 1993 and 2001) resulting in 
cumulative damages of over several hundred 
millions of dollars.  Improvement in the accuracy of 
flood forecasts could help in reducing these 
damages.   

 
National Weather Service’s Lower 

Mississippi River Forecast Center (LMRFC) has 
the authority to provide the public with flood 
forecasts as well as river stage information. In 
order to forecast river stages, LMRFC needs 
spatial precipitation estimates, as well as 
forecasts.  The quality of flood forecasts depends 
on the accuracy of precipitation estimates already 
on the ground, and also on the quality of 
forecasted amounts.  The LMRFC also needs 
reliable river gage data, updated rating curves, 
and properly calibrated hydrologic models.  The 
precipitation estimates are used as input to an 
operational hydrologic model which forecasts 
future river levels and compares past forecast to 
observed values. LMRFC produces its own 
precipitation estimates (Stage III data) and relies 
primarily on NWS’s Hydrometeorological 
Predication Center (HPC) for the forecast 
guidance.  In this study, we are examining the 
possibility of improved precipitation forecasts 
using the estimated values and the forecasts.   
 

LMRFC creates hourly Stage III 
precipitation product based on composite 
NEXRAD WSR-88D radar data, as well as hourly 
and daily rain gages.  Hourly precipitation mosaics 
for the basin are generated from a 3-stage 
                                                
* Corresponding author address: Ashutosh S. Limaye, 
GHCC/USRA, 320 Sparkman Dr., Huntsville, AL 
35805. Email: Ashutosh.Limaye@msfc.nasa.gov. 
 

process of automatic and manual quality control in 
real-time at the LMRFC using hourly rainfall 
estimates from 25 NEXRAD WSR-88D radar sites. 
Data are in a binary digital (xmrg) form having a 4-
km spatial resolution using a polar stereographic 
projection - the NWS HRAP format.   
 

HPC QPF originates from the National 
Weather Service (NWS) National Centers for 
Environmental Prediction (NCEP) HPC.  At 0000 
UTC and 1200 UTC (and occasionally at 0600 and 
1800 UTC) Hydrometorological Analysis and 
Support (HAS) personnel at the LMRFC process 
HPC’s QPF for each six hourly time-step out to 24 
hours.  The forecasts are then modified, if 
necessary, based on the local meteorological 
situation.  Once local modifications are complete, 
the forecasts are saved, then gridded (32km x 
32km horizontal across the domain of the 
LMRFC).  The gridded files are then converted to 
XMRG format (HRAP 4km x 4km grid) for local 
processing.  
 

The LMRFC is currently running NCEP’s 
Workstation ETA (Ws ETA), which is a version of 
the operational ETA model modified to run at the 
local office level.  The Ws ETA runs twice a day at 
0000 UTC and 1200 UTC, using grid dimensions 
55x91x45 (20 km horizontal) across the entire 
LMRFC domain.  The model is initialized using 
operational ETA output, and employs the 
Betts-Miller-Janjic (Betts and Miller, 1986, Janjic, 
1994) convective parameterization scheme.  
Model output from each run is available in six-hour 
time-steps out to 60 hours, and includes 6-hour 
and 24-hour QPF amounts.  Once the model 
finishes, the 6-hour QPF grids are saved and 
converted to XMRG format. 

 
For this study, we are focusing on a large 

precipitation event produced by Tropical Storm 
Allison.  In early June of 2001, Allison produced 
large amounts of precipitation over the Gulf coast 
states. Amite river basin received an average of 
approximately 350 mm of water over the 
watershed.  Northern half of Amite river basin was 
less hit than the southern, which, at places, 



received well over 1/2 a meter over 6 days. The 
storm provides us with an excellent opportunity to 
improve the raw QPF over the Amite river basin 
using the spatial stage III data, with a possibility of 
extending the technique to a much larger spatial 
domain.  
 
KALMAN FILTER 
 

The atmospheric model QPFs contain 
forecasting errors.  The procedure to achieve the 
reduction in these errors is based on Kalman filter 
and incorporation of remotely sensed rainfall 
measurements.  Similar studies have been 
conducted over the past few years (French and 
Krajewski, 1994; Lee and Georgakakos, 1996).  
These studies have revealed that short term (1-6 
hr) corrected forecasts represent improvements 
over raw model results over limited spatial 
domains.  The system equation is analogous to 
AR(1) process, with a dynamic estimation of 
transition matrix of system states.  Since the 
model QPF (yA(t)) is used  as the noisy estimate 
being corrected, the system equation is  

  
    … … … … … … ..(1) 

 
Whereas the measurement equation becomes 
 

… … … … … … ..(2) 
 
in which yR(t) is the vector of remotely sensed 
rainfall values, Φ (t) is the transition matrix of 
states in the system equation, w(t) is the system 
noise with 0 mean and variance Q(t), yA(t) is the 
vector of atmospheric model forecasts, H(t) is the 
measurement coefficient matrix, and v(t) is the 
vector of ‘measurement’ noise with mean 0 and 
variance R(t).  The filter is attempting to improve 
QPF rainfall values, based on Φ (t), R and Q, 
through Kalman gain (Bergman and Delleur, 
1985). The implementation of the filter involves 
estimation of Φ (t), which is a function of 
covariance structure between the filtered values 
and the QPFs.   
 

An adaptive filter-parameter estimation 
scheme is employed (Awwad and Valdés, 1992), 
which alternates between the variable space filter 
and the parameter space filter.  In contrast to the 
variable space filter, the parameter space filter is 
designed to update the Φ (t) instead of the QPF.  
The updatedΦ (t) is then used in the variable 
space to continue filtering the QPF for the next 
time step.   Thus, we have a “forecast”, based on 

the present QPF, and known covariance structure, 
prior filtered QPF and past stage III data. Having 
forecasted the possible QPF, we introduce the 
observed data for the present time step to the 
filter, which produces the updated (or “filtered”) 
time series.  The filtered data are used in the 
estimation of forecast in the next time step.  
 
PRELIMINARY RESULTS 
 

Figure 1 shows a glimpse of the results 
from the filter. Inputs to the filter in this case 
include the most recent raw HPC QPF (referred as 
HPC), with stage III data.  The data are the 6-hr 
totals from Allison, for the cell covering Baton 
Rouge Airport.  

 
The filtered estimates are in close 

agreement with the stage III data, as expected. It 
can also be seen that the trends in the forecasted 
time series compare well with the observed data. 
The forecasted QPF captures the trend in the 
stage III fairly well, with the exception of two of the 
6 large totals (10.16 cm and 6.46 cm), at which 
times, the raw QPF completely missed the events. 
However at other times, the forecasted estimates 
tend to bring the raw and the observed values 
together.   

 
The total forecasted precipitation volume 

for the entire event matches closely with the stage 
III data.  Another indicator of forecast 
improvements would be relative errors in the raw 
and the forecasted QPF.  Mean absolute error as 
well as the root mean square error between the 
stage III - forecasted estimate pair is less than 
those between stage III - raw QPF. R2 for the 
forecasted QPF is 0.4, whereas that for the raw 
QPF is 0.23.  

 
A similar behavior can be seen when 

filtering is done using Ws-ETA QPF instead of the 
HPC.  The Ws ETA produces somewhat lower 
QPF estimates than the HPC, possibly in part 
because at times, HPC estimates are produced 
more frequently (additional runs at 0600, or 1800 
UTC).   

 
Instead of the most recent QPFs, we can 

use an average of all the previous forecasts made 
for a specific time. As expected, the farther ahead 
in time a forecast is made, the quality of the 
forecast decreases, producing a more uniform 
QPF fields over the watershed.  Therefore the 
improvements in the QPF using the Kalman filter 
are not as pronounced. 

w(t)(t) y(t)y(t) A +Φ=

v(t)y(t) H(t)(t)y R +=
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Figure 1: Filtered and forecast time series for tropical storm Allison using stage III data and HPC QPF. 
 


