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3.5 AN AUTOMATED ROAD WEATHER PREDICTION SYSTEM
FOR ROAD MAINTENANCE DECISION SUPPORT

Bill Myers*, Melissa Petty, Jim Cowie
NCAR, Boulder, CO

A road maintenance manager faces a complex
problem in determining if and when to allocate costly
resources to counter winter roadway hazards. An
advanced decision support system (DSS), much like
those appearing in the aviation system over the last
decade, is envisioned as an aid in this difficult task.
Weather, road temperature, and mobility
(slipperiness) forecasts are all critical components of
such a DSS. In particular, weather is usually the
trigger responsible for creating the other problems. An
effective weather forecast is critical to the success of
the DSS.

The development of a prototype Maintenance DSS
(MDSS) is being funded by the Federal Highway
Administration in partnership with the State
Departments of Transportation. A component of this
prototype system is an automated weather forecast
system. The output of this weather forecast system
must be tuned to the needs of the winter road
maintenance community and interface with other
components of the DSS. Its goal is to provide timely
and accurate forecasts that are both temporally and
spatially specific. To accomplish this the Road
Weather Forecast System (RWFS) makes point
forecasts out to 60 hours at locations along the
highway ribbons. These forecasts are automatically
updated every three hours.

The RWFS has been designed to be open with a
highly modular architecture. The system develops a
consensus forecast by combining a number of
“independent” forecasts. Each of these forecast
modules applies a particular forecasting technique to
a data source. As new forecasting techniques are
developed or as new meteorological data become
available, it is relatively easy to plug a new forecast

module into the system. Currently most of the data
used are standard available NCEP products. However
this is not a limitation and there is no reason other
numerical weather prediction models or observational
networks’ data could not be incorporated.
The RWFS has two groups of forecast sites. The first
are termed “core” forecast sites. These are sites
where observations are available. While not required,
it is preferable that these observations be regularly
disseminated in real-time, i.e. within a few hours of
the observation time. The observations at these core
sites are used to tune the forecasts to achieve a
higher skill level.

The second group of forecast sites consists of non-
observational sites. In the RWFS, these sites are
located along the highways usually at 5-10 mile
intervals, or at spots of interest such as bridges or
locations near bodies of water. Currently, forecasts at
these non-core forecast sites are generated from the
higher quality core sites’ forecasts by a climate-
deviation interpolation method. As with all
interpolation methodologies, the density of
surrounding core sites affects the quality of the
interpolated forecasts. For this reason, it is important
to include as many high quality observational
networks as possible.

The system produces forecasts for many standard
meteorological variables verifiable by METARs or
road weather sensors. Amongst these are the
instantaneous variables like temperature, dew point,
wind speed and direction, cloud cover, and visibility.
There are a number of variables describing activity
over a time period like three-hour and six-hour POP,
probability of thunder, probability of fog, conditional
precipitation types, and quantitative precipitation
forecasts. Daily variables like maximum and minimum
temperatures and 24-hour POP are also produced.

Broadly speaking, the system uses three major
classes of forecast techniques. The first class
consists of semi-static forecast techniques such as
climatology and persistence. The second class
consists of NWS MOS forecast modules. These
forecasts are generated by pass-through of MOS
forecasts at the MOS sites, and “smartly” interpolated
MOS forecasts elsewhere. The third class of forecast
modules use a Dynamic MOS (DMOS) technique.
This is a dynamic version of the NWS MOS approach
that can be applied to any numerical weather
prediction model fairly quickly. Each forecast module
produces, as best it can, a complete forecast
consisting of forecasts for every variable at every site
at every forecast lead time.



The DMOS approach has been applied to the ETA
and AVN models. The MOS equations for each model
run are recalculated weekly. In generating the
regression equations, only the model runs and
observations from the last 100 days are considered.
The main advantage of this approach is that within 3
months any new model can be added to the system.
For example, while no ETA MOS guidance is yet
available, ETA DMOS forecasts have already been
contributing to the system. Also, this DMOS guidance
is available at any observing site.

A major disadvantage of the DMOS approach is that
the regression equations generated are less stable
than their NWS counterparts. Extensive quality control
efforts must be applied to ensure that erroneous
forecasts do not sneak through. A simple first step in
this QC procedure is to not allow any regression
equations whose r-squared scores do not meet a high
threshold. When this situation is detected, “default”
equations are used instead. These default equations
attempt to capture the logic a meteorologist would
apply if faced with having to come up with a forecast
based only on the model data.

All the forecast modules’ forecasts need to be merged
into a single final forecast. A process called the
integrator is responsible for this combination step.
This adaptive fuzzy logic process performs a bias-
corrected, confidence-weighted average of the
forecast modules’ predictions.
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Here the integrated forecast F is calculated by
weighting the individual forecasts fi by confidences ci

and weights wi. The confidences are a measure of
how well each forecast module felt it performed its
job. The weights represent the historical skill of each
forecast module. A different weight vector exists for
each forecast variable, for each site, and each
forecast lead time.

Each day the weights are modified to reflect the
changing skill of the forecast modules over time. The
forecast modules that have been doing well get more
weight, and the poor performers lose weight. This
happens by adjusting the weight vector by a small
amount in the gradient direction of the error in weight
space.

The integrated forecasts are passed on to the post-
processor where quality control checks are
performed. Also, other variables can be derived here
from the “core” forecast variables. For example,
relative humidity can be derived from air temperature
and dew point rather than being predicted separately.

The post-processor also provides spatial and
temporal interpolation capabilities. Since the core
forecasts are created on 3 hour intervals to match the
models’ output interval, temporal interpolation is
necessary to produce hourly predictions. Spatial
interpolation is used to generate forecasts at the non-
observational sites.

Finally, these final forecasts are combined with non-
verifiable variables, formatted appropriately, and
made available to the road condition modules. These
non-verifiable variables, such as sub-surface
temperature, are not available in the current
observational data sets and are required by the
downstream Road Temperature algorithms. Making
use of the forecast engine does not make sense if the
system cannot tune itself using verification data.
Since highway Environmental Sensor Station (ESS)
data are not yet incorporated into the system, these
fields are extracted out of the models and passed on
unmodified.

These weather forecasts are combined with roadway
data to create high-resolution forecasts of road-
specific variables such as road temperature and net
mobility. These road state data can be used to
automatically generate recommended highway
maintenance procedures using standard rules of
practice.

This weather and road state information will be
integrated with the recommendations into a display
system made available to a road maintenance
manager. This display will provide an overview of
potential upcoming operations and serve as a starting
point for the development of an operational plan.
Hopefully this integrated system will become the basis
for a valuable decision support system that will
improve winter road maintenance service to the
public.


