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1. INTRODUCTION

We use quantitative uncertainty analysis
techniques to estimate the likelihoods of climate
change in the twenty-first century. We use the
Latin Hypercube approach to perform a Monte-
Carlo simulation based on uncertainty in eight
factors determining anthropogenic emissions
projections and three climate system properties.
Although uncertainty in the emission model's
factors are assessed via expert judgment,
uncertainty in the climate system properties can
now be constrained by climate observations of the
twentieth century. By sampling from the uncertain
input distributions and running approximately 500
simulations with the MIT Integrated Global System
Model (IGSM) (Prinn et al., 1999), this method
produces probability distributions (pdfs) for climate
variables in the twenty-first century. We present
results from two cases, with and without mitigation
policies, to demonstrate the effect on the pdfs of
climate change. This method differs considerably
from other studies (e.g., Wigley and Raper, 2001)
in that the input parameters for the climate model
are constrained by recent climate observations
(Forest et al., 2001a,b) and pdfs were estimated
for the emission scenarios (Webster et al., 2001)
rather than assuming equal probability among
possible scenarios.

2. METHOD

To estimate uncertainty in climate change
projections, we perform Monte-Carlo simulations
with the MIT IGSM by propagating uncertain input
distributions for the important model parameters
and emission scenarios. To reduce the number of
simulations, we run 250 simulations where
specified set of input parameters and emissions
scenarios are obtained from a Latin Hypercube
Sampling (Iman and Helton, 1988). This sampling
procedure divides each input pdf into 250 equally
probable bins and samples randomly from the 250
bins for each input parameter without
replacement. Thus, the 250 simulations are
roughly representative of the point probability
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distribution over the input parameters.

Several components of the MIT IGSM have been
improved since Prinn et al. (1999) was published.
The atmospheric chemistry and climate model
(Wang et al., 1998) has incorporated a reduced-
form urban air chemistry model (Mayer et al.,
2000) such that atmospheric chemistry is treated
separately for urban areas and then incorporated
into the large scale climate system. The Terrestrial
Ecosystem Model is now fully integrated and
estimates the carbon uptake by land surfaces as
required in the atmospheric carbon budget.

3. INPUT PDFS FOR CLIMATE MODEL
PARAMETERS

In previous studies of this type (e.g., Webster and
Sokolov, 2000), the probability distributions for
input parameters to the climate model have been
obtained from expert elicitation studies. Forest et
al., (2001a,b) have now provided input
distributions for three important model parameters
as constrained by optimal fingerprint detection
statistics obtained from observations of recent
climate change and model estimates of natural
variability (full description in Forest et al. 2001a).
Two of the uncertain parameters (climate
sensitivity (S) and the rate of heat uptake by the
deep ocean given as the effective ocean diffusivity
(Ky)) controls the large-scale climate system
response to external forcings. The third parameter
(Faer) accounts for uncertainty in the total forcing
via the aerosol forcing strength. Together, these
act as surrogates for structural uncertainty of
atmosphere-ocean general circulation models
(AOGCMs). By estimating the dependence of
detection statistics on these parameters, we
estimate three joint probability distributions based
on independent climate change diagnostics. We
then combine these pdfs by using Bayes' Theorem
to construct a posterior distribution based on
multiple diagnostics.

The distributions used in this study (Figure 1) are
modified from those in Forest et al. (2001b) by the
inclusion of an expert prior applied to the ocean
heat uptake parameter, K, (i.e., effective ocean
diffusivity.)  This prior is estimated from the
distribution of K, values obtained by matching the
transient response to identical forcings of the
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Figure 1. Marginal probability density functions
for climate model parameters (S, top; K,,
middle; Fae, bottom) as estimated in Forest et
al. (2001b). We show the posterior pdfs with
(solid) and without (dashed) expert priors for S
and K,. When no expert prior is used, a
uniform prior is assumed over the parameter
space.

climate model component of the IGSM to the
response of AOGCMs. A description of the
matching procedure and the list of matching
parameters for AOGCMs can be found in Sokolov
et al. (2001) in this volume.

4. FUTURE EMISSIONS UNCERTAINTY

The uncertainty in emissions scenarios relevant to
climate change has been assessed in Webster et
al. (2001) and two sets of 250 scenarios were
generated to force the IGSM. The scenarios were
calculated using the MIT Emissions Prediction and
Policy Analysis (EPPA) model (Babiker et al.,
2001) which is a computable general equilibrium
model for the global economy divided into 12
regions and 8 economic sectors. The model
projects the major greenhouse gases (CO,, CHy,
N,O, HFCs, PFCs, and SFg) and other pollutants

and climatically or chemically important
substances including aerosols and their
precursors (from SO,, black carbon, organic

carbon) and NO,, CO, NH; and non-methane
volatile organic compounds.

Using an expert elicitation process (detailed in
Webster et al., 2001), pdfs for eight factors were
estimated and a Latin Hypercube sample was
drawn in order to calculate 250 unique emission
scenarios under two assumptions. The first
considered is a "No Policy" case in which no
restrictions are placed on future economic
activities to impose reductions in the emissions. A
second is "Policy" case generated according to a
stringent policy proposed in Reilly et al (1999).
This is a severe policy scenario designed to
reduce global warming significantly.

5. OUTPUT PDFs FOR CLIMATE CHANGE

Two 250-member ensembles were calculated by
the IGSM according to the Policy and No Policy
emission scenarions and the set of 250
combinations of the climate model parameters
generated with the Latin Hypercube algorithm.
(N.B. 250 simulations of the IGSM required ~30
days of computing on a 16-node cluster of
850MHz AMD Athlon computers running Linux.)
From each set of simulations, pdfs for any climate
change variable can be estimated. As an
illustration of the approach for global mean
surface temperature change and sea level rise
(Figure 2), we find that, absent mitigation policies,
our projections shows the mean rise in global-
mean surface temperature from 1990 to 2100 is
2.5 °C, with a 95% confidence interval of 0.9 to
5.3°C. With a stringent policy applied, the 95%
confidence interval is reduced to 0.7 to 3.2°C with
a mean of 1.6 °C. We see similar changes in the
pdfs and statistics for the projections of sea level
rise.
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Figure 2: The probability distributions for
global-mean decadal-mean surface air
temperature (top) and the thermal expansion
component of sea level rise (bottom) for the No
Policy and Policy cases.

6. DISCUSSION

Primarily, this work serves as an example of how
guantitative uncertainty analysis can be applied to
the climate change problem such that we can
estimate results that are relevant to the ongoing
scientific and political debate. Several issues
relating to these types of results should be
mentioned. First, to determine meaningful
probability estimates for climate change, both the
economic and scientific uncertainty must be
included. Taking a range of model results cannot
provide probability bounds unless an analysis of
this type is performed. Second, this analysis does
not include uncertainty in the possible non-linear
responses of the climate system such as a
collapse of the thermohaline circulation or of the
West Antarctic Ice Sheet. Each of these is beyond
the capability of the IGSM and therefore, these
results are conditioned by these assumptions.
Third, the role of expert elicitation in such studies
must also be considered. For example, another
group of experts could choose a different set of
input pdfs and therefore, alter the results. In

constraining the input pdfs for the climate model
parameters with climate change observations, this
component of the uncertainty analysis is less
susceptible to such criticism.
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