
J3.22 THE PCMDI CLIMATE DATA ANALYSIS TOOLS (CDAT) –
AN OPEN SYSTEM APPROACH TO THE IMPLEMENTATION OF A

MODEL DIAGNOSIS INFRASTRUCTURE

Michael Fiorino1 (fiorin@llnl.gov) and Dean Williams (williams13@llnl.gov)

Lawrence Livermore National Laboratory
Program for Climate Model Diagnosis and Intercomparison

Livermore, CA 94550
Software Web Site: http://cdat.sourceforge.net

1. INTRODUCTION

The Climate Data Analysis Tools (CDAT) is a set of separate
software subsystems that are glued together using the object-
oriented Python scripting language (http://www.python.org)
to form an infrastructure for model diagnosis and other data
analysis tasks. The power of the system comes from Python
and the software subsystems. Python provides a general
purpose and full-featured scripting language with a variety of
user interfaces including command line interaction, stand-
alone scripts (applications) and GUIs. The CDAT
subsystems, implemented as Python modules, provide access
and management of gridded data (Climate Data Management
System or CDMS); large-array numerical operations (Numpy
Mask Arrays or MA); and visualization (Visualization and
Control System or VCS).

We characterize CDAT as “open system” because the
software subsystems are independent and the object-oriented
nature of Python allows CDAT to be “delay bound” or that
the actual tool is built at run time, i.e., is not fixed. Further,
the software subsystem (Python “modules”) are open source
and freely available for community-wide development. Thus,
CDAT is easily extended and represents a different approach
to the technical problem of implementing a model diagnosis
infrastructure.

In this paper, we compare and contrast the CDAT approach
with more traditional tools built from system-level software
(e.g., C and X windows), such as the Grid Analysis and
Display System GrADS (http://grads.iges.org/grads) and
FERRET (http://ferret.wrc.noaa.gov/Ferret/), and show how
CDAT complements and offers an alternative interface to data
accessible by these popular tools. We also demonstrate
CDAT-hosted data service applications using the popular
Live Access Server (LAS) and Distributed Oceanographic
Data System (DODS) systems and using the metadata search
capabilities of CDMS.

2.0 CDAT COMPONENT SUBSYSTEMS

The key CDAT subsystem is CDMS as it provides access to
gridded data in variety of formats and higher-level
organization via an XML representation of sets of data. The
“cdunif” data interface of CDMS is a unified

1 Dr. Michael Fiorino, PCMDI, Lawrence Livermore National
Lab, P.O. Box 808, Mail Stop-264, Livermore, CA 94550
UCRL-JC-142879-ABS

application programmer interface (API) containing the I/O
layers of: 1) GrADS (binary floats and integers and
WMOGRIB formats); and 2) netCDF (COARDS and CF
compliant (http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-
current.htm). The cdunif layer has been successfully tested
with HDF and other formats, but the GrADS/netCDF
interface supports the primary data sets used in climate model
research.

Python has attracted a large following in the scientific
community because of the Numpy module
(http://www.pfdubois.com/numpy/). This module features a
comprehensive collection of array processing functions and
has been extended to handle the common situation in gridded
data where some points have missing values (the “MA”
module). The performance of Numpy is excellent because the
calculations are C-code based.

CDAT provides interfaces to two graphics systems for display
of data objects: 1) VCS, specialized for 2-D field plotting and
animation; and 2) GRACE
(http://www.math.nyu.edu/AML/software/xmgrace.html) for
1-D line plots. Python allows relatively straightforward
interfaces to other systems and is one of the key benefits of
basing CDAT on a glue or scripting language.

3.0 CDAT CONCEPT OF OPERATION

The basic function of CDAT is the creation and manipulation
of data objects. These data objects consist of data (metadata
and gridded fields in an N-dimensional array) and methods
(data object functions). The first step is making a Python
application that “imports” Python modules (objects with data
and functions) for processing such as CDMS for reading data
sets and MA for performing numerical computations.
Because CDAT data objects are Pythonic (i.e., Python object),
they have a consistent structure that is understood by other
Python-hosted modules. Thus, CDAT objects have access to
wide range of standard Python modules, from database to
Internet protocols. Further, CDAT applications are flexible as
they depend only on the modules imported and are created
only when executed. In contrast, the GrADS and FERRET
applications are fixed and their data objects are internal and
specific with limited access to external processes.

A typical CDAT data application would import CDMS, open
a data set, extract data (create an object), perform an analysis
function (transform the object), and then pass the object to a
display object (e.g., VCS) for plotting. Beyond elementary

mailto:fiorin@llnl.gov
mailto:williams13@llnl.gov
http://cdat.sourceforge.net/
http://www.python.org/
http://grads.iges.org/grads
http://ferret.wrc.noaa.gov/Ferret/
http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-current.htm
http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-current.htm
http://www.pfdubois.com/numpy/
http://www.math.nyu.edu/AML/software/xmgrace.html

modules for data access and calculation, the CDAT system
comes with special purpose modules for performing common
data analysis tasks with gridded data such as “selectors” to
simplify extraction of data in world (e.g., longitude and time)
coordinates and averaging in space and time (e.g., calculate
DJF seasonal mean). CDAT also features more advanced and
complex diagnostic modules including the NCAR spherepak,
regridpak routines.

4.0 CDAT USER INTERFACES

The primary user interface is the Python command line either
interactively or through a script. We have also implemented
a visual interface to CDAT (VCDAT) using Tkinter
(http://www.python.org/topics/tkinter/) a thin Tcl/Tk
(http://www.sco.com/Technology/tcl/Tcl.html) client.

Samples of the interfaces are given below. The first shows
the VCDAT GUI:

The second is a script application that demonstrates extraction
or slicing of a 4-D variable using world coordinates and
plotting:

#!/usr/bin/env python
import cdms
open a GrADS data set
f=cdms.open(‘model.ctl’)
list variables
f.listvariables()
create a data object or variable
sea level pressure in Pa
p=f(‘psl’,time=0,lat=(-30,30),lon=(0,180))

import vcs and display
import vcs
x=vcs.init() # create plot window
x.plot(p/100) # plot in hPa
x.gif(‘/tmp/t.gif’) # save as gif image

The script produces the following plot:

The example above shows that the syntax of data object
creation is quite simple and comparable to fixed systems such
as GrADS/FERRET. However, unlike fixed system, CDAT
gives the user full access to the operating system and other
modules through Python. Thus, we believe our system allows
for the implementation of a more comprehensive and open
infrastructure for gridded data diagnostics.

Future plans include server-side data analysis where a CDAT
client requests a calculation (e.g., global average) on a data
server running a CDAT server. The availability of Python
modules for various Internet and client-server protocols will
allow for a more rapid and robust implementation. We will
also support more general grids (e.g., non-rectilinear) and
build interfaces for observational (point) data.

5.0 RESOURCES

The following links give starting points for CDAT and
Python:

• CDAT Project Home Page and Docs:
http://cdat.sourceforge.net

• Python Links for New Users:
http://www.python.org/doc/Newbies.html

• CDAT Source and Binary Distributions:
http://sourceforge.net/project/showfiles.php?group_
id=11356

6.0 ACKNOWLEDGEMENTS

CDAT is the collective work of the following team
members at PCMDI: Krishna AchutaRao, Charles
Doutriaux, Robert Drach, Mike Fiorino, Charlie
O’Connor and Dean Williams. This work was
performed under the auspices of the U.S.
Department of Energy by the University of
California, Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48.

http://www.python.org/topics/tkinter/
http://www.sco.com/Technology/tcl/Tcl.html
http://cdat.sourceforge.net/
http://www.python.org/doc/Newbies.html
http://sourceforge.net/project/showfiles.php?group_id=11356
http://sourceforge.net/project/showfiles.php?group_id=11356

