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1.   INTRODUCTION 
 

The value of a weather forecast to a user is 
about much more than accuracy. The most 
important aspect of the design of a forecast delivery 
system is to optimise the flow of the opinion of the 
forecaster directly to the user. This paper 
demonstrates that considerable potential economic 
value is lost by using the traditional method of 
providing weather information in terminal aerodrome 
forecasts (TAFs) in categorical form, i.e. as a binary, 
Yes/No product 
 
2.   EXPERIMENT DESIGN 
 

One of the purposes of the experiment was to 
validate use of a signal detection model for 
forecasters’ decisions when formulating TAFs. Other 
studies, most notably Mason (1982), have shown 
that probabilistic forecasts of elements like rain, 
storms and temperature closely fit the signal 
detection model. Forecasters were asked to 
nominate their confidence, to the nearest 10%, that 
the weather at five different lead times would be 
below the Special Lowest Alternate Minimum 
(SLAM) for the aerodrome. The SLAM is that level 
of visibility and cloud base used to determine fuel 
carriage. The lead times are 1, 3, 6, 12 and 18 
hours. Forecasters input these percentages at the 
same time that they formulated the four routine 
TAFs each day. This was done so that the lead 
time-skill relationship was not skewed. Non-routine 
amendments are usually issued to amend the TAF 
at short lead times, and omitting these removes any 
possible bias. The trial data shown here is from 
Townsville on the tropical east coast of Australia, 
from Melbourne on the east of the south coast, and 
Sydney on the subtropical east coast. The 
meteorological causes of below minimum weather at 
the three locations are quite different. 

  
3. THEORY 
 
3.1 Signal Detection Theory 
 
         Signal Detection Theory (SDT) assumes that, 
prior to a decision, there are two overlapping normal        
 --------------------------------------------------------------------
* Corresponding author address:  Ross Keith, 
Bureau of Meteorology, RAAF Base, Townsville, 
4810, Australia. E-mail: r.keith@bom.gov.au 

 
 
probability distributions, one for the weight of 
evidence that the event will occur and another that 
the event will not occur. This is illustrated in fig. 1. A 
more complete treatment of SDT as applied to 
forecast verification is given in Mason (1982). The 
separation of the means, d’, can be used as a 
measure of forecast skill providing the ratio of the 
standard deviations of the two distributions is close 
to one. 
 

 
Fig. 1.  Idealised probability distributions of the decision 
variable ÷, f0 preceding non-occurrence of an event and f1 
preceding occurrence. The area marked by vertical 
hatching indicates the probability of a false alarm, and the 
diagonal hatching represents the probability of a hit. 
 

The y axis is weight of evidence, and the x axis 
is values of ÷, the decision threshold. f1(÷) represents 
the evidence for the event, and f0(÷) the evidence 
against the event. ×c is the critical decision 
threshold, above which the forecast is yes, below 
which it is no. Note that the formal definition of hit 
rate, h, is Pr(Forecast=Yes|Event =Yes) and of false 
alarm rate, f, is Pr(Forecast=Yes|Event=No). 

 
For the experiment, the hit rate, h, and false 

alarm rate, f, were calculated for each of the 11 
thresholds from 0% to 100%. For each threshold h 
and f are plotted against one another, the resulting 
graph is called a Relative Operating Characteristic 
and has a parabolic, concave shape with points at 
(0,0) and (1,1). 

 
 

3.2 Forecast Value 



 
In any forced choice, binary outcome (Yes/No) 
forecast situation, the distribution of the outcomes 
can be summarised by four values: true positives 
(hits), true negatives (correct rejections), false 
negatives (misses) and false positives (false 
alarms). The expected value (EV) of a forecast can 
be calculated as the sum of the expected value 
(cost) of each of these four outcomes. 
 
EV = h.pC.VTP  + (1-pC).f.VFP +  pC.(1-h).VFN + (1-
pC).(1-f).VTN ,           (1) 
 
where pC is the climatological rate of occurrence of 
the event, or Pr(Event = Yes), the Bayesian prior 
probability. VTP is the value of a true positive, and 
similarly for VFN, VFP, VTN. 
 

For a perfect forecast h = 1 f  = 0, the expected 
cost (EC) with respect to a perfect forecast is: 
 
EC = (1-pC).f.(False Alarm Cost) + pC.(1-h).(Miss 
Cost),                                   (2) 
 
where False Alarm Cost = VTN - VFP, the cost of 
incorrectly forecasting an event, and Miss Cost = 
VTP – VFN, the cost of not forecasting an event. Note 
that, by definition, Miss Cost does not include any 
costs which are already incurred by a hit, i.e. a 
correct forecast of an event. 
 
       Because the form of the normal distribution of 
the signal detection model is assumed, and h and f 
can be measured, d’ and thus ÷C can be deduced. 
From the results of the experiment, graphs of EC vs 
decision threshold were constructed for particular 
flights. The False Alarm Cost and Miss Cost were 
provided by QANTAS for these flights. It soon 
became apparent that there existed a value of the 
decision threshold which minimises EC. It can be 
shown that for d(EC)/d÷ = 0, the optimal value of the 
decision threshold is p(opt), where 
 
p(opt) = CR / (1 + CR)           (3) 
 
       CR is the Cost Ratio and equals False Alarm 
Cost divided by Miss Cost. Each flight is specified 
by a CR value. p(opt) is actually the same as the 
cost-loss ratio from economic utility analysis, 
derived here in a signal detection framework. 

 
4. RESULTS AND DISCUSSION 
 

Fig. 2 shows plots of h vs f for individual 
forecasters at Townsville, Melbourne (Vic RFC) and 
Sydney (SAMU). There are significant differences in 
attitude to risk between A and B, C and D, and E 
and F. A, C and E exhibit a less cautious (higher 
decision threshold) than B, D and F respectively. So 
in each group there exists a significant range of 
attitude to risk i.e. ÷C varies among individuals. 

 
 
Fig. 2. h,f plots for individual forecasters at Townsville, Vic 
RFC (Melbourne) and SAMU (Sydney) with 95% 
confidence limits. 
 
       Fig. 3 shows plots, for each lead time at 
Townsville, of the normal deviates of h and f. The 
linear relationship between them is proof of the 
initial assumption that they are generated by normal 
probability distributions. This has been shown to be 
the case for other weather elements. Forecasts for 
the other two locations exhibit similar behaviour. 
 
       Fig. 4 shows plots, for Townsville and 
Melbourne, of h vs lead time for the forecasts and 
for persistence. The forecast h is calculated from a 
maximum likelihood ROC, and is at the same value 
of f as scored by persistence at each lead time. As 
can be seen the forecasts at Townsville fail to match 
persistence out to about 4 hours, and at Melbourne  
out to about 2 hours. At these short lead times, 
airlines would be better off using present weather for 
flight planning. 
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Fig.4. h vs lead time for Townsville and Melbourne, for the 
TAF and persistence.  

 
       Fig. 5 shows reliability diagrams for Melbourne. 
A degree of over-forecasting is apparent, though 
there is obviously significant skill shown in 
forecasting the probabilities. Similar results occurred 
for Townsville, but with greater overforecasting. 
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Reliability VicRFC 3 hours lead
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Reliability VicRFC 6 hours lead

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Forecast Probability

F
re

q
u

en
cy

 o
f 

O
cc

u
rr

en
ce

 
 
Fig. 5. Reliability diagrams for Melbourne for 1, 3 and 6 
hour lead times. The diagonal is perfect calibration. 
 
 
 
 
 
5. COST ANALYSIS. 

Fig 3. Plots of normal 
deviates of h and f for  
Townsville for each 
lead time. 
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       From costs supplied by QANTAS for a flight 
from Singapore to Melbourne, the False Alarm Cost 
(FAC) was $1,390 and the Miss Cost (MC) was 
$10,535.  This produces a CR value of 0.132, and 
so p(opt) = 0.117. From h and f values measured in 
the trial, the average critical decision threshold for 
the Melbourne forecasters is about 0.02, or in other 
words they forecast Yes once they think below 
minimum weather is >= 2% likely. This extreme 
degree of conservatism is caused by forecasters’ 
perception of the consequences of a missed event. 
Fig. 6 is a graph of EC vs ÷C for that flight, using d’ 
measured in the trial and the climatological rate of 
below SLAM weather of 0.02.  

Fig. 6   Cost vs Decision Threshold
FAC $1,390  MC $10,535 d'=2.1, Pc=0.02
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Fig 7.   Cost vs skill
FAC = $1,390   MC=$10,535   Pc=0.02
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At a decision threshold of 0.02, the cost of the 

errors in the forecast is on average $231 per flight. If 
the forecast was reliably made at the optimum 
decision threshold of 0.117, the cost would be $128. 
So a perfectly reliable forecast, made at the 
appropriate decision threshold, would save about 
45% of the total cost of the errors. Using the 
reliability diagrams in Fig.5, if a forecaster was 
asked to use 0.117 as his or her decision threshold, 
the effective decision threshold would be about 
0.07. If this is used, the cost is $135. So, for this 

flight, even the moderately reliable forecasts as 
currently produced would provide most of the 
savings (41%) gained by the perfectly reliable 
forecasts (45%). 

 
Fig. 7 shows, again for the Singapore to 

Melbourne flight, how EC varies with d’, the index of 
skill. The two plots are for the optimum decision 
threshold of 0.117 and for the measured decision 
threshold of 0.02. The significant difference in EC 
for the two different decision probabilities is obvious, 
especially at low skill. Note also that if the decision 
threshold is optimal, a decrease in skill does not 
matter all that much. So one could suggest that the 
issue of risk management is at least as important as 
forecaster skill. 

 
Of course the value of p(opt) is different for 

each flight. For example another flight into 
Melbourne, a short flight originating in Sydney, has 
a p(opt) of 0.008. Remembering that the flight from 
Singapore into Melbourne has p(opt) of 0.117, if the 
two flights arrived in Melbourne at the same time, at 
least one would have planned on a TAF formulated 
with a highly sub-optimal decision threshold. 

 
 

6. CONCLUSION 
 

Considerable economic benefit is potentially 
available to airlines if TAFs were expressed as 
estimated probability of below minimum weather. 
 

 Such a system would unlock the value of 
forecasters’ ability to provide reasonably reliable 
estimates of the probability of occurrence of these 
events. The amount of benefit would depend on 
three factors: 

 
1. The ability of airlines to specify False 

Alarm Costs and Miss Costs, 
2. The degree to which regulators would 

allow airlines to incorporate this 
approach into flight planning, 

3. The ability of forecasters to provide 
reliable estimates of the probability of 
events. 
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