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Introduction

The depth of the turbulent Ekman boundary layer
(usually referred to as the planetary boundary layer—
PBL) is one of its most fundamental properties
strongly required in a number of practical problems
within meteorology and oceanography. The PBL
depth exhibits strong variability, which is partially
explained by the effects of the density stratification
and the earth’s rotation. In spite of nearly a cen-
tury of continuous efforts (since Ekman, 1905) and
strong practical motivation, no consensus is achieved
in the determination of the PBL depth as dependent
on the PBL governing parameters. Essential disagree-
ment between alternative formulations is hardly sur-
prising in the light of a rather uncertain correspon-
dence between known formulations and observational
data. Experimental testing of all known PBL depth
eqautions exhibits large spread of data. This suggests
that additional mechanisms, besides the static stabil-
ity and rotation, should be seriously considered. This
paper focuses on the effect of baroclinicity.

Baroclinic PBL depth equations
On the assumption that the vertical gradient of the

geostrophic wind I' = V_,.u, = constant, conven-

tionally neutral PBL depth is immediately extended
to the baroclinic regime by inserting ur = wu.(1 —

\/Ri./Ri)~"/? instead of the usual stress velocity u,:
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Here, Ri = (N/I')? is the gradient Richardson num-
ber above the PBL, N is the Brunt-Viséila frequancy,
un = N/|f] is the imposed-stability parameter and
f is the Coriolis parameter. Constants Cr, Cyn, Cs
are to be determined from empirical data.

The truly neutral PBL could only be barotropic,
as the presence of baroclinic shear would inevitably
make turbulent the whole neutrally stratified flow.

LES validation of Eq. (1) is shown in Figure 1. The
theoretical curve is calculated after Eq. (1) taking the
a priori value of Ri. = 0.25. Figure 1 demonstrates
good performance of Eq. (1) over the whole range of
Ri typically observed in the earth’s atmosphere.
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Figure 1: The dependence of the dimensionless baro-
clinic PBL depth, hr gs/h«, on the free flow Ri. Here,
he = Cru. /| f|(1+C3CunC 52 un) "1/, Black boxes
are LES data. The line represents Eq. (1).

Accounting for baroclinicity, the Monin-Obukhov
turbulent length scale L = —u?/Fjs and the internal-
stability parameter u = | f|u./L, become
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where Fjs is the surface buoyancy heat flux. Intro-
ducing these corrections, baroclinic stable stratified
PBL depth equation becomes

_1-1/2
x Ric
hEZCR‘uW I:I_VR_Zi:| X
C2Ch 2 : —1/2
(1 S+ o[- V] )

LES validation of Eq. (4) is sown in Figure 2.

Lyaroctinic = L [1 -

(4)

MIUU LES model

The LES model developed at the Dept. of Earth
Sciences solves numerically filtered equations for the
Boussinesq fluid in the horizontally periodic domain.
The subfilter stress tensors are expressed in terms of
filtered velocity and potential temperature using a dy-
namic mixed subfilter model (DMM) introduced by
Vreman et al. (1994). It links the subfilter and the
resolved variables assuming that the LES partially
resolve the Kolmogorov’s inertial subrange of scales.

LES provide detailed information about turbulence
in simulated boundary layers. Since the PBL depth is
controlled by the largest turbulent eddies, it is hardly
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Figure 2: The dependence of the dimensionless depth,
|f| hres/u«, of the simulated baroclinic stable PBL
(uny = 340, Ri = 5.1) on the internal stability pa-
rameter, p. Black boxes are LES data. The line rep-
resents Eq. (4).

strongly dependent on fine feature of the small-scale
part of turbulent spectrum. Accordingly, numeri-
cal experiments were performed on relatively coarse
mesh. The computational domain was taken rela-
tively large. The point is that the simulated PBL
depth is sensitive to the domain size. Earlier inves-
tigation of non-local features of the stable PBL dis-
closed their dependence on the internal-wave field in
the adjacent free flow (Zilitinkevich, 2002). Then ap-
propriate resolution of the major internal-wave har-
monics is required. It should also be sufficiently high
to allow undisturbed development of the steady-state
regime.

In new MIUU-LES numerical experiments, the
height of the domain is always chosen sufficiently high
so that the simulated steady-state PBL depth would
be less than two third of the domain height. LES runs
cover 5 to 8 hours. Before each set of experiments, an
18-hour run is done to ensure that the steady state is
achieved.

Conclusions

To the best of our knowledge, the role of baroclin-
icity was not considered in earlier formulations for
the neutral and stable PBL depth. It is shown that
the contribution from the baroclinic shear I' increases
the PBL turbulent velocity scale ur, which in turn in-
creases the equilibrium PBL depth hg. This effect is
fully determined by the free-flow Richardson number
Ri.

The proposed diagnostic formulation, Eq. (4), for
the equilibrium neutral or stable PBL depth ac-
counts for the following mechanisms and govern-
ing parameters (in brackets): earth’s rotation (Cori-
olis parameter f), surface-layer stability (surface

buoyancy flux Fys), free-flow stability (Brunt-Véaiséla
frequency N), and baroclinicity (geostrophic-wind
shear T'). Accordingly, it presents the dimension-
less PBL depth as a function of the three dimension-
less numbers, namely, the imposed-stability param-
eter uy, the internal-stability parameter p and the
free-atmosphere Ri.

Taking ' = 0, Eq. (4) reduces to the barotropic
PBL depth equation already derived and tenta-
tively verified against atmospheric data by Zilitinke-
vich et al. (2002). LES provide an efficient comple-
mentary empirical-validation tool, which allow con-
sidering separately different essential dependencies
included in Eq. (4). Results from the MIUU-LES are
consistent with earlier LES. They fully validate the
proposed theory, give quite certain estimates of the
empirical constants Cr = 0.5, C's = 0.9, C,n = 0.45,
and show full consistency with the traditional esti-
mate of the critical Richardson number Ri. = 0.25.
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