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1. INTRODCUTION
This study arises from the development of a new
non-hydrostatic model to study the physics and
dynamics of Tropical Cyclones. The two major
components of a numerical weather prediction
(NWP) model are the dynamics and physics
kernels. Here, we have concentrated on
implementing and testing numerical schemes that
have appeared in the recent literature. The focus of
this study is on the accuracy and efficiency of using
high-order difference schemes. We also assess the
performance of two non-oscillatory schemes for
scalar advection of positive definite quantities. The
results from a range of test cases are presented,
culminating in a high resolution simulation of an
idealized tropical cyclone. Tests were performed
with advection schemes up to 10th order to confirm
the need for higher order schemes but also to
demonstrate the diminishing returns using schemes
beyond 6th order. The scheme with the best overall
performance was the 5th order upwind advection
scheme with similar order non-oscillatory schemes
for fields that have positive definite constraints.

2.NUMERICAL ADVECTION SCHEMES.
We consider the advection of some scalar quantity
φ which can be written in advective form as
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or in flux form as
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Where F=Uφ  and U = (u,v,w) is the cartesian
velocity vector. Equation (1) is linear if U is a
function only of the independent variables. Eq. (1)
and (2) are equivalent for non-divergent flows and
for one-dimensional linear advection can be written
in semi- discrete form as
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where L(φ) is the advection operator and F i+1/2    is
the flux at the east boundary of the cell centered at
point .

We compare two non-oscillatory advection
schemes. The first is the flux corrected transport
(FCT) algorithm proposed by Boris and Book
(1973) and extended to multi-dimensions by
Zlaesak (1979). The FCT scheme approximates the
solution with a high order scheme in regions where
the solution is smooth while using a low order
(usually first order) monotone schemes where the
solution is poorly resolved, or discontinuous. The
algorithm is flexible and allows the use of any
number of high order schemes. We have
implemented the FCT algorithm  with third and
fifth order upwind schemes, and fourth and sixth
order centered schemes.

The second scheme is referred to as the Weighted
Essentially Non-Oscillatory (WENO) scheme that
has gained popularity for use in the study of high
mach number flows. The WENO scheme is based
on ENO shock capturing schemes (Shuand
Osher,1988,1989) and was developed by Liu et al.
(1994) and further refined by Jiang and Shu (1996),
and extended to high orders by Balsara and Shu
(1996). Shu (2000) provides a succinct summary of
the WENO scheme. The WENO scheme performs
a linear combination of polynomial curve fits using
stencils of width r to achieve an accuracy of 2r+1.
The weighted combinations is what gives the
scheme it’s name.

3. RESULTS.
For all the test cases, we used both the advective
form and the flux form discretizations and found
that they both produced similar results, hence we
will show the results from the advective form
discretization. For 1-D advection we compared
performance of the first to tenth order basic
advection schemes using centered differencing for
the even ordered schemes and upwind differencing
for the odd ordered schemes. The L2 error norms
verify the order of convergence for each of the
basic advection schemes, with the L2 errors tending
towards 10–13 for high order schemes, and high
resolution. This appears to be due to floating point



truncation errors, as the time truncation errors for
third order Runge Kutta scheme should be much
lower than that.  The first order upwind scheme is,
as expected highly dampening, and the third and
fifth order upwind schemes exhibit some
dampening at low resolutions, but this is alleviated
at higher order schemes. The second and forth
order centered schemes exhibit trailing oscillations
but again these are reduced using higher order
schemes. Using a rectangular pulse as a test case
the Gibbs phenomena is evident in all schemes
above first order, because the leading truncation
term in the first order scheme is the second order
diffusion operator. These oscillations are not as
significant in the upwind schemes as compared to
the centered schemes. From the results of the one
dimensional cases we restricted our 2 dimensional
numerical solutions to using first to six order
schemes. The test case here is rotating a cone
through 360 degrees and comparing the numerical
solution with the analytical solution. The first order
scheme almost completely dampened the cone out
after one rotation. The second order scheme
maintained the amplitude better but had a trailing
wake due to large dispersion error for third and
fifth order upwind schemes the amplitude of the
cone was increasingly preserved, and for forth and
sixth order centered the wake was reduced,
although still evident. The L2 errors are similar for
the one dimensional case, and the fifth and sixth
order schemes had very similar L2 error. Results for
two dimensional deformational flow were similar.
The first order scheme was highly dampening, and
the even order centered schemes were highly
oscillatory, especially when there were fine scale
features. This is due to enhanced Gibbs oscillations
from the coarse resolution of the fine scale features.
One the other hand the third and fifth order
upwinding scheme maintained the form of the exact
solution quite well. The L2 error for the schemes
showed that for coarser resolutions the third and
fifth order upwind schemes outperformed the
fourth and sixth order centered schemes. There is,
however, a cross over point with respect to
resolution after which the centered schemes do
better than the upwind schemes. Figures supporting
these results will be presented during the
presentation, however the small area allowed for
figures means they would be indistinguishable
here.

4. CONCLUSIONS.
In terms of performance over a

comprehensive set of test cases ranging for
advection of simple 1-D through to two
dimensional multi scale flows, it is suggested that
high order upwind or centered schemes provide
arguably the best simulations. Fifth and sixth order
are recommended as moving to higher order
schemes produces diminishing returns for

significant coding and computational cost. When
properties such as positvity and non-oscillatory
behavior are required, such as for moisture
variables, it was found using FCT and WENO
schemes that firth or sixth order again produced the
best results.
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