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1. INTRODUCTION

In a hurricane, the concentrated potential vorticity
(PV) source due to heating in the eyewall can result in
a reversal of the radial PV gradient, allowing the vortex
to become barotropically unstable. In this manner an ax-
isymmetric vortex can develop asymmetries, redistribute PV
through chaotic nonlinear mixing, and eventually resym-
metrize with a different, stable structure. Recent studies
of this process have provided insight into diverse aspects
of hurricane dynamics, including the development of spiral
bands and mesoscale vortices, the existence of polygonal
eyewalls, and asymmetric eye contraction (e.g., Guinn and
Schubert, 1993; Montgomery and Kallenbach, 1997; Schu-
bert et al., 1999).

While PV is conserved following the motion, nonlinear
redistribution of PV results in filamentation which cannot
be followed accurately by deterministic models with lim-
ited resolution. Consequently, various statistical approaches
(such as minimum enstrophy and maximum entropy) have
been proposed to compute equilibrium solutions. Most
studies of this process to date have applied these methods
in the simplest dynamical context, namely, two-dimensional
nondivergent incompressible flow. This paper will concen-
trate on the extension of these ideas to the next level of
dynamical complexity, namely, the shallow-water equations.

2. FORMULATION

The shallow-water equations can be written in rota-
tional form as

g—‘t’+(§+f)k><v+VB:0,

g—lz + V.- (vh) =0,
where v is the velocity, h is the free surface height, { =
k- V x v is the relative vorticity, B= 1v-v+g(h—H) is
the Bernoulli function, H is a constant (positive) reference
height, f is the Coriolis parameter, and g is the gravitational
constant. The corresponding PV, given by g = H((+f)/h,
is conserved following the motion.
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We take the domain to be the unbounded (z, y) plane
and assume that h is positive and bounded above and be-
low. Furthermore, we assume that the flow of interest is
localized, with ¢ = f outside a bounded region for all ¢,
and tends toward geostrophic balance fv = gk x Vh as
r = ||r|| = co. With these assumptions, it can be shown
that the far-field solution satisfies

h=H+O<\/§e_’/R>, r — 00,

where R = /gH/f is the Rossby radius of deformation.
This implies that the mass

w= [t

E:/%[v-vh+g(h—H)2],

energy

and angular momentum
1,
L:/[rvh+ Efr (h—H)]

are all conserved. Here we have written these quantities in
terms of the deviation height h — H so the integrals (over
the whole domain) remain finite.

3. MAXIMUM ENTROPY

As the flow evolves in time, chaotic nonlinear mixing
may cause any initial distribution of PV to become highly
distorted on progressively finer scales, making determinis-
tic solutions impractical. The Maximum Entropy approach
(Miller, 1990; Robert and Sommeria, 1991) gives up on
following these “microscopic states”, and substitutes a sta-
tistical approach to find the most probable “macroscopic”
equilibrium state (independent of t) to which the micro-
scopic states converge. Here we formulate the Maximum
Entropy problem, adapting the approach of Chavanis and
Sommeria (2002) to the case of the unbounded f-plane
and using a different formulation of the angular momen-
tum constraint.

Suppose that initially the PV consists of patches of
constant values, i.e., q(r,0) € {do,...,dn}, with go = f.
Since PV is conserved following the motion, in any micro-
scopic state the PV in a small neighborhood of a point r will
take on only these same values. Denoting the fraction of



the area near r where ¢ = §; by pi(r), we can characterize
the equilibrium state by the probabilistic distribution

g(r) = Z@lﬂl(r), sz(r) =1
=0 =0

(the second equation is a normalization condition). The
Maximum Entropy approach identifies the equilibrium state
as that which maximizes the mixing entropy

S:=- In(pi)h
z/p p

subject to the dynamical constraints of the system. By
integrating hq over each patch we obtain circulation con-
straints, which we can write in terms of the mass as

M® :=/p1h=Mél) :=/ h (I=1,...,n),
2

where €Q; is the initial region for patch [. Here we assume
that each of these patches where q # f is bounded; on the
unbounded surrounding region Qo where ¢ = §o = f we
obtain the constraint

MO = /(poh—H)zMéO) :=/ﬂ (h— H).

The Maximum Entropy problem consists of maximizing S
subject to the constraints M® = M (1 = 0,...,n),
E = Ey, and L = Lo, and the far-field conditions h — H
and ¢ — f as r — co.

The problem formulation is somewhat simpler in terms
of the mass fraction oy(r) = hp;(r). Then the normaliza-
tion condition becomes

n
h= 2 g,
=0

the mass (circulation) constraints become

M(l):/al (I=1,...,n), M(O):/(UO_H),

and the entropy functional reduces to

S=/ lhln(h)—galln(m)] .

In this form we can show that the entropy functional S(o’)
is strictly concave; likewise, the energy functional E(o) is
strictly convex provided u®+v? < gh. The angular momen-
tum functional L(o) is indefinite; however, the combination
E*(0) := E(0)+7L(0) (where 7y is a Lagrange multiplier)
is strictly convex provided u® + (v 4+ yr)? < gh.

To solve for the equilibrium state, Chavanis and Som-
meria (2002) introduce the mass-weighted streamfunction
1 and velocity potential ¢ satisfying

hv* = h(v++k xr) = Hk x V) + HV ¢.
Then the equilibrium state is given by

pi(r) = % exp(—a; + Bqiv),

where ; and (3 are Lagrange multipliers and

Z=" exp(—au +Bay),
1=0
with the corresponding PV given by
Yoo G exp(—au + Ba)
Yoo exp(—au + Byh)
Note that Z and g are functions of 1 only, with
g= 1dIn(2)
B dyp -
The equilibrium solution has ¢ = 0, which results in the
balance equation

q=

hv* = Hk x V).

In the case of axisymmetric flow, this reduces to gradient

balance:
(f + E) v = @
r 9

To compute this equilibrium solution we extend the
iterative algorithm of Turkington and Whitaker (1996), us-
ing the convexity properties established above to guarantee
convergence. Results of these computations for hurricane-
like vortices will be presented at the conference.
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