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1. INTRODUCTION
          

     The statistical approach for the description of con-
centration fluctuations is based on the statistical model-
ing of the simultaneous trajectories of pairs of particles
(see, e.g., the recent review by Sawford 2001).

We present a stochastic model for the separation be-
tween particles of a passive contaminant effectively
released into a homogeneous, isotropic and stationary
turbulent flow at high Reynolds numbers.  In the atmos-
phere, a model solely for the magnitude of the separa-
tion distance effectively averages over all orientations of
the separation vector and the properties for the distance
are essentially equivalent to those in isotropic turbu-
lence.  Therefore we model only the scalar separation,
that is the magnitude of separation, instead of the three
components of the separation vector, while the orienta-
tion of the pairs will be accounted for by implicit aver-
aging.  This averaged statistic is a robust indicator of
typical separations within a cloud and can be expected
to be a measure of local dilution or levels of internal
fluctuations in the cloud.

The first model for scalar separation was proposed by
Durbin (1982).  More recently, Kurbanmuradov and
Sabelfeld (1995) gave an example of a scalar separa-
tion model which satisfies the well-mixed condition.  To
formulate our model we use a direct new formulation for
the conditional acceleration which satisfies the well-
mixed condition as well as consistency of the model with
mean, variance, skewness and kurtosis of the Eulerian
distribution of velocity differences.  The simple model
that results from this approach has the advantage of
very efficient computational times, which permits op-
portunities for new applications, particularly embedded
within complex atmospheric flow models.

This simple relative dispersion model describes proper-
ties of the internal mixing within a cloud such as the
dissipation of concentration fluctuations due to the con-
tinuous entrainment of uncontaminated fluid into the
volume of the cloud, which is most effectively carried out
at scales of motion of the same order as the cloud size.
Larger scale incursions of clean air are mostly mean-
dering effects, and can be accounted for with meander-
ing plume models (Gifford 1959; Luhar et al. 2000; Yee
and Wilson 2000).

2. MODEL DEFINITION

     The mean square concentration near plume and puff
centres in terms of scalar separations in a frame of ref-
erence moving with the cloud centre of mass can be
written as:
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where r is the scalar separation between two particles,
the subscript “o” indicates conditions at the source,
p(ro;to|0;t) is the probability distribution function (pdf) of
the separation at the source of particles that are coinci-
dent at time t, and q(ro) is the covariance of the concen-
tration at the source.  This expression was obtained
after averaging over all angles of the initial separation
vector.  The scalar separation r(t) between two particles
is modeled by the following system of stochastic differ-
ential equations for r itself, and for its rate of change
u = dr/dt:

du(t) = a(u,r)dt+(2Coε)1/2dW     (2)
dr(t) = u(t)dt    (3)

where dW are the random increments of a Wiener proc-
ess with zero mean and variance dt, ε is the mean en-
ergy dissipation rate, Co is a universal constant which
was set equal to 6 and the drift term a(u,r) is determined
from a Fokker-Planck equation.  The model is derived
first by assuming the following functional-form closure
for a(u,r):

a(u,r) = α(r) + β(r)u + γ(r)u2     (4)

and then by imposing the well-mixed criterion to deter-
mine the coefficients α, β and γ.  This form, a quadratic
function of u, is of the same type as the one used by
Franzese et al. (1999) in the context of one-particle
models for the atmospheric convective boundary layer.

3. MODEL RESULTS

    The simulations were made releasing 105 particle
pairs, and using a variable time step dt = 10-3 ×
σu

2(r)/(2Coε).  The function q(ro) = co
2exp(-ro

2/2σo
2) was

assumed as source term, where σo is a characteristic
length scale of the source and co is the concentration of
the cloud centre of mass at the source.  By definition,
co ~ Q/(Uσo

2) for a plume, where Q is the amount of



contaminant released per unit time and U is the mean
wind velocity at the source, while co ~ M/σo

3 for a puff,
where M is the amount of contaminant released.  Since
the scale of the fluctuations at the source is known to
have an important effect on the second-order statistics
of concentration, the simulations are performed for
plume and puff releases from five different source sizes,
and focus on the parameterization of this size depend-
ence.  The source size σo ranges over five orders of
magnitude, namely from σo =10-4L to L, where L is the
turbulence integral length scale.

The results include the simulations of the pdf of relative

separation (Fig. 1), mean square relative separation 2r ,

mean square concentration field 2c , mean concentra-

tion c , standard deviation of concentration σc (Fig. 2),

and intensity of concentration fluctuations σc/ c .

The evolution of the above concentration statistics with
time depends on the source size and on source char-
acteristics such as the emission rate and the mean wind
for a plume and the amount of material released for a
puff, as well as on the turbulence characteristics.  We
propose a scaling law that eliminates this dependence
on the source size.  By virtue of such a scaling we found
a universal behavior to account for source size effects
for the concentration statistics and performed some
simple analysis which led to the derivation of general

formulae for the decay of 2c , c , and σc with time, and
to the estimation of the value and location of the maxi-
mum σc.  For example, an interesting consequence of
this representation is the result that the maximum σc,
normalized over the initial concentration, is a constant,
i.e. it does not depend on the source size.  The results
show a very good agreement with the predictions of the
similarity theory.  For instance, the model reproduces
the prescribed -9/2 exponent in the time decay law for

2c .
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Fig. 1   Probability density function p(r;t|0;t_o) of the
particle scalar separation r(t), for particles with zero ini-
tial separation, as a function of r/L for several times t
after release.
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Fig. 2   Nondimensional standard deviation of concen-
tration σc/co as a function of t/(σo

2ε)1/3 for simulated
plumes, predicted by the model for five values of σo.
The solid line represents the formula
σc/co =1.87σo

3/2ε-3/4t-9/4.


