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1. INTRODUCTION

A dynamic, solution-adaptive grid algorithm
(DSAGA) was developed by Srivastava et al. (2000) to
increase the grid resolution in regional-scale air quality
models (AQM). DSAGA repositions the grid nodes
throughout the simulation but it does not alter the
structured nature of the grid. A weight function
determines where and when the grid resolution is
needed the most. The user-defined weight function can
be a linear combination of error estimates, i.e., gradients
and curvatures, in various pollutant species. The grid
nodes are clustered around the areas of utmost
importance, i.e., where the weight function values are
high. In other parts of the domain that are deemed to be
of less interest, the grid resolution is coarsened. Thus,
at any instant during the simulation, DSAGA makes
near-optimal use of pre-assigned computational
resources in an attempt to reduce resolution-related
errors. In preliminary applications involving dispersion
and chemistry of puffs and plumes, the adaptive grid
model was more accurate and efficient than static grid
models (Srivastava et al. 2001a; Srivastava et al.
2001b).

2. ADAPTIVE GRID AIR QUALITY MODEL

A simulation with an adaptive grid AQM can be
viewed as a sequence of adaptation and solution steps.
During the adaptation step, the solution (i.e.,
concentration fields) is frozen in time. A weight function
that can detect the error in the solution is used to move
the grid nodes. Iterative movement of the grid nodes
continues until the error is reduced sufficiently. During
the solution step, the grid is held fixed and the solution
is advanced in time. However, before this can be done,
the meteorological and emissions inputs must be
mapped onto the adapted grid. Finally, using a
coordinate transformation, the non-uniform adapted grid
is mapped onto a uniform grid in the computational
space. Once this is done, all the numerical solution
algorithms developed for static, uniform grid AQMs
become available for time advancement of the solution.

DSAGA was incorporated into an ozone AQM
(Odman and Ingram, 1996). Several modifications were
necessary. First, the governing equations were modified
to accommodate the coordinate transformation that
maps the non-uniform adapted grid onto a uniform grid
in the computational space. An emission processor was
developed that maps point, area and mobile sources
onto the non-uniform grid cells after every grid

adaptation. For efficiency, this processor uses
customized intersection algorithms instead of more
general algorithms available through geographic
information systems. A meteorological processor was
also developed that can map the output of a uniform
grid mesoscale meteorological model onto the adapted
grid. In the future, a meteorological model can be
developed that can operate on the same grid and run in
parallel to the air quality model. The adaptive grid AQM
was verified by comparing its results to those of the
uniform grid AQM (Odman et al., 2001).

3. APPLICATION TO AN OZONE EPISODE IN THE
TENNESSEE VALLEY

An ozone episode in the Tennessee Valley during
July 7-17, 1995 was simulated using the adaptive grid
AQM. The emission inputs for the region were
developed from the Southern Appalachian Mountains
Initiative (SAMI) inventory. The emission inputs
processed after each grid adaptation consisted of area
and mobile sources mapped on a 88× km emission
grid, and point sources. There are over 9000 point
sources in this domain including some of the largest
power plants in the U.S.A. Meteorological data were
obtained from a 44 × km resolution simulation with the
Regional Atmospheric Modeling System (RAMS). The
adaptive grid consisting of 64112× cells was initialized
at 88× km resolution. The weight function was defined
as the curvature of the surface-layer nitrogen oxide
(NO) concentration. Current research focuses on
determining which species to include in the weight
function calculation for optimum model performance. A
movie showing the progress of grid adaptations along
with surface-layer NO concentrations can be found at
http://environmental.gatech.edu/~odman/adaptive.avi.

Two more simulations of the same episode were
conducted with the static grid version of the same AQM:
one at 44 × km resolution and the other at 88× km
resolution. The CPU time for the simulation with the
adaptive grid was about twice of the 88× km static grid
although they employed the same number of grid cells.
This is not entirely due to the overhead of grid
adaptations. Note that the grid size is reduced to few
hundred meters around large point sources. This
results in time steps shorter than 1 minute to keep the
Courant number less than unity for explicit solution
algorithms. The simulation with the 44 × km resolution
required approximately three times more CPU time than
the static grid simulation with 88× km resolution. Since
all three simulations share the same area- and mobile-
source emissions and meteorological data at the same
resolution, differences in their estimates are expected
only in areas affected by point-source plumes.
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First, the estimated NO concentrations were
compared. The adaptive grid captures the NO gradients
near source areas with a level of detail that is far
superior to the static grids even though the 44 × km
resolution one uses  4 times more grid nodes. Note that
some large power plant stacks, such as Cumberland,
are emitting above the stable boundary layer at
nighttime. Since their plumes do not affect the surface
layer NO concentrations, no grid clustering is observed
around such stacks during the night. However, during
daytime hours, as such plumes mix down and start
affecting the surface layer NO concentrations, grid
nodes are clustered around them, along with other
sources. Another simulation where the curvature of total
column NO is used as the weight function is in progress.

Next, the simulated ozone fields were compared.
Ozone levels and the variability in the fields were
generally very similar for all three simulations. Ozone
data from U.S. EPA's Aerometric Information Retrieval
System (AIRS) network were used for further
evaluation. There are 75 AIRS stations in the modeling
domain reporting ozone data for the simulated period.
Statistical measures such as normalized biases and
errors were very similar for all three simulations, the

44 × km static grid being slightly better than the
adaptive grid, and the 88× km static grid being the
worst by a slight margin. This is not a surprising result
given that very few of the 75 stations are in rural areas
affected by point source plumes. The estimates in urban
areas that are primarily affected by area and mobile
emissions are expected to be similar, in fact slightly
worse for the adaptive grid since clustering near point
sources may coarsen the resolution around many of the
stations.

Finally, rural AIRS stations and the periods during
which they were affected by point-source plumes were
identified and the model estimates were compared to
observations. Figure 1 shows the hourly ozone
concentrations at the Summer County, TN station on
July 15, 1995. There are major point sources to the
southwest of this station. On that day, both static grid
simulations estimate that the southwesterly winds would
transport the plume to the monitor. However, the
observations suggest otherwise. The static grid
simulations overestimate the ozone concentration by
65-75 ppb. The adaptive grid estimated that the plume
would travel west of the monitor consequently the
daytime ozone concentrations are more consistent with
observations. Detailed analysis revealed that the
adaptive grid minimizes numerical diffusion of the plume
by placing high resolution along its track. Static grids, on
the other hand, diffuse the plume even when the
resolution is 44 × km.

4. CONCLUSION

An adaptive grid, urban-to-regional scale AQM was
developed. The model was applied to an ozone episode
in the Tennessee Valley. Estimates of NO and ozone
were compared to those from static grid models that
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Fig. 1 Hourly ozone concentrations  at Summer
County, TN on July 15, 1995: observations (in open
diamonds), 44 × km static grid estimates (thin solid
line), 88× km static grid estimates (thick solid line) and
adaptive grid estimates (dashed line).

require comparable computational resources. By placing
higher resolution near point sources, the adaptive grid
AQM estimated ozone concentrations more consistent
with observations at downwind stations. Several ways of
improving the model were identified during this
application.
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