6.9 SPECTRAL CHARACTERISTICS OF SURFACE LAYER TURBULENCE
ABOVE SITES OF VARYING SURFACE STRUCTURE
DERIVED FROM FLUXNET MONITORING DATA

Kai Morgenstern®, D.D. Baldocchi ®®, A.G. Barr®, D.P. Billesbach®, T.A. Black *, K.J. Davis®, M. Falk®,
M.L. Fischer’, A.H. Goldstein®, A. Ibrom?, G. Katul’, H. McCaughey™®, and K.T. Paw U°.

! University of British Columbia, Vancouver, Canada;

Service of Canada, Saskatoon, Canada; *

2a,b

University of Nebraska, Lincoln; °

University of California, Berkeley; 3 Meteorological
Pennsylvania State University,

University Park; 6 University of California, Davis;7 Lawrence Berkeley National Laboratory, Berkeley; 8 Universitit
Gottingen, Goéttingen, Germany; ° Duke University, Durham; 10 Queen's University, Kingston, Canada

1. INTRODUCTION

Standard spectra are often used as a gauge of what
eddy-covariance signals should look like. Deviations
from that spectral shape are then attributed to
shortcomings in instrumentation or measurement
conditions. The most common set of standard spectra
were derived by Kaimal et al. (1972) from a set of 45
hourly runs of eddy-covariance measurements taken
over an extensive stretch of flat Kansas farmland. Here,
we investigate whether common spectral shapes are
present in long-term eddy-covariance measurements
that include many thousands of hours and many
different surface types.

Ensemble spectra for fourteen different eddy-
covariance tower sites were calculated using high
frequency turbulence data provided by ten groups, all
part of the FLUXNET community. The canopy heights of
the sites used in the analysis span two orders of
magnitude and a wide variety of canopy types as well
as meteorological conditions.

2. METHODS

Table 1 lists all sites that contributed data to this
study along with canopy and measurements heights.
For each site a routine was designed to read half-hourly
sets of high frequency data from the individual raw data
format, in order to produce time series of wind
velocities, sonic temperature, carbon dioxide, and water
vapor in a common format. Data for the latter two
tracers were also converted to mixing ratios.

Subsequent to this initial reading and conversion, all
data were treated exactly the same in the post-
processing. As a first step all points more than five
standard deviations away from a 60 s moving average
were removed from the data. This despiking proved
necessary because single spikes, e.g. due to data
logging errors, produce a white noise spectrum that
dominates the signal. After that, the data were rotated
three times to yield zero mean lateral and vertical wind
speed as well as zero lateral momentum flux. This was
done to keep the data treatment consistent with current
practice in eddy covariance analysis (Aubinet et al.
2000). After that the data were prepared for the
application of a Fourier transform by removing linear
trends in all variables and subsequent tapering of the
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time series using a Hamming window of length 2%,
where k was chosen to make the number of data
samples the highest power of 2 below the original
number of samples. Within the eddy covariance
community there is some debate as to whether
detrending should be applied when calculating fluxes.
Here, however, we used it to remove variations on
scales much greater than the length of the time series
because the Fourier transform can only resolve a
minimum frequency that corresponds to the length of
the time series. Tapering with a smooth function like the
Hamming window is common practice in time series
analysis (e.g. Press et al. 1992).

Table 1: Canopy and measurement heights

Site Height (m)
Canopy EC
Vaira Ranch® 0.2 25
ARM, Oklahoma’ 0.3 60
Blodgett Forest®® 4 10
Tonzi Ranch® 9 20
Mogostos Forest® 12 18
Old Jack Pine'®3* 13 28
old Black Spruce®* 15 25
Loblolly Pine® 15 17
old Aspen** 21 39
Walker Branch® 26 36
Park Falls® 25 30,122, 396
Solling F1° 30 39
Campbell River* 33 43
Wind River® 60 70

Fourier transforms of all variables were computed
and power and cospectra were calculated from these.
The high frequency part of these spectra (f > 0.05Hz)
was block averaged in 20 logarithmically spaced bins
and in total 100 frequency components were stored per
half-hour spectrum.

For the main part of the analysis the spectra were
normalized by their total variance or covariance and
frequencies were divided by wind speed to yield wave
number and then normalized by multiplying by
measurement height. To calculate ensemble spectra for
each site the half-hourly spectra were grouped into
daytime and nighttime cases and averaged in 50
logarithmically spaced bins of normalized
wavenumbers.
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Figure 1: Ensemble power spectra w during the day

3. RESULTS AND DISCUSSION

The ensemble power spectra of vertical wind speed
w during the day collapse onto a single curve for most
of the sites when wave numbers are normalized with
measurement height (Figure 1). The agreement of
spectra from such a range of sites is very encouraging
as it shows that it might indeed be possible to
characterize turbulence in the surface layer by means
of standard spectral shapes.
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Figure 2: Ensemble power spectra of CO; at night

Turbulence, however, does not always dominate the
spectra. In the case of the ensemble spectra of carbon
dioxide during the night (Figure 2) no single curve is
found. Nevertheless, the ensemble spectra show a
common pattern as they rise at the high and low
frequencies, and have a local maximum in between.
This maximum is likely due to the action of turbulence
that is expected in this frequency range. At night when
turbulence is rather weak, noise at the high frequency
end and mesoscale variations at the low frequency end
dominate the spectra. The application of improved
signal processing techniques such as the use of high-
pass filtering instead of linear detrending and proper

removal of electronic noise will likely improve these
results.

For the cospectra, the same simple averaging of
spectra that works rather well for the power spectra
does not yield the same smooth results (Figure 3).
During the day, the behavior of the ensemble cospectra
is generally more erratic than that of the power spectra.
This is in part due to the fact that the half-hourly
cospectra usually contain positive and negative
components even for substantial absolute values of the
flux. Hence, other methods for evaluating the ensemble
of all cospectra will be discussed in the presentation.
Nevertheless, the ensemble cospectra are not
influenced by noise or mesoscale variations that
dominate the carbon dioxide signal at night and hence it
can be inferred that the latter do not contribute to the
turbulent flux measurement and that the frequency
range covered is sufficient to measure all contributions
to the flux.
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Figure 3: Ensemble cospectra of vertical wind speed
and CO; during night and day

We conclude that the exercise of processing the
vast amount of high frequency data from multiple flux
tower sites proved worthwhile indeed as it showed that
a) common shapes of surface layer spectra do exist, b)
problems with nighttime data exist but do not influence
the cospectrum, and c) the frequency range commonly
sampled in eddy covariance experiments covers the
whole cospectrum for all sites even under difficult
conditions and is therefore sufficient to measure all
contributions to the turbulent flux.
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