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1. INTRODUCTION 

The estimation of a climatology of in-flight icing 
conditions has been a goal of the icing research 
community for a number of years.  Much effort has 
been expended to develop forecasts of icing conditions 
aloft, but little is known about the distribution of icing 
over the continental United States.  However, 
development of a climatology of icing conditions is not 
straightforward, due to the limited observations of this 
phenomenon. Widespread observations of icing are 
only available in the form of pilot reports (PIREPs) 
from aircraft. Unfortunately, these observations are 
sporadic and non-systematic, and cannot be used 
directly to provide a coherent or meaningful measure of 
the frequency of icing conditions in many locations 
(Brown and Young, 2000).  

A statistical approach is taken in the development 
of a model for the icing climatology, using observations 
available in the regions of large cities. Icing reports are 
expected to be nearly systematic in those regions, 
because the air traffic is relatively frequent and is 
consistent from day to day. Surface climatological 
variables have been found to be related to the icing 
observations in these locations, and these variables are 
used to develop a statistical model of icing frequency. 
The resulting model is applied to airport locations 
serving smaller populations, using their local surface 
climatological observations to provide estimates of the 
true frequencies of icing conditions. The frequency 
estimates from the model provide a more coherent and 
consistent climatology of icing than obtained from the 
PIREPs alone. Methods to quantify the uncertainty in 
the estimates are also investigated and applied. 

2. METHOD  

Due to the non-systematic and spatially irregular 
nature of PIREPs, a direct observational climatology of 
icing is ill advised.  A well-documented problem with 
PIREPs is their very limited null information.  That is, 
conditions of “no icing” are very rarely reported.  
However, a lack of positive icing reports does not 
necessarily indicate the absence of icing.  Figure 1 
shows the relationship between population and the 
proportion of days with an icing PIREP for the regions 
around 131 US cities in January 1993-2000.  A strong 
positive relationship is exhibited.  Most notably, small 
cities never exhibit a high proportion of icing days.  

Excepting a particularly peculiar meteorological 
phenomenon, population clearly has an effect on 
reporting.  PIREPs are concentrated around large 
airports and common flight paths, where air traffic is 
the highest.  Also, aircraft are more likely to encounter 
icing on landing or takeoff than while cruising, as they 
move through the lower portions of the atmosphere.  As 
the reporting of icing conditions is much more reliable 
in high traffic areas, this research focused on 
developing statistical models linking icing with surface 
observations in these regions.  These models are then 
applied to areas with less air traffic but where surface 
observations are readily available.  The focus was on 
developing a climatology for comparison to other 
estimates of icing and providing a basis for new 
forecasting techniques. 

 

2.1 “Cities based” approach 

Fig. 1 – Plot of log transformed population vs. 
proportion of days with at least one icing PIREP, 
January 1993-2000, for the regions around 131 U.S. 
cities. 

PIREPs from 1993-2000 were included in this 
analysis. This research adopted a “cities based” 
approach essentially using only those PIREPs within 
100 km of a large city (population greater than one 
million).  For each city and day in the study period, a 
binary response was generated indicating the presence 
or absence of an icing PIREP.  For the purposes of this 
study, several icing PIREPs within 100 km of a given 
city on a given day were treated the same as a single 
icing PIREP. In this manner, daily dichotomous data 
were generated for all the cities in the study region and 
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period.  The proportion of icing days in a time period 
(e.g. a month) was calculated from these data.     

The implicit assumption in this technique is that if 
icing existed above a large city, then at least one PIREP 
would be recorded.  On days where no icing PIREPs 
were recorded, there was assumed to be no icing 
present.  These binary responses were generated for 38 
metropolitan areas with populations over one million 
from the eastern half of the continental United States.  
The dearth of large cities in much of the western US 
prohibited reliable statistical analysis in this area.  
Figure 2 shows the region and cities used in the 
analysis. 

 
 
 

 
 
2.2 Surface observations 

A 30-year (1961-1990) climatology of selected 
surface variables was produced using data from the 
National Climatic Data Center.  Bernstein et al (1997) 
demonstrated how surface conditions can give an 
indication of the potential presence of supercooled 
liquid water aloft.  Roughly 25 weather parameters 
were derived from the 30-year history, all of which are 
possible indicators of icing.  In keeping consistent with 
the measurement of icing as a proportion of days with 
at least one icing PIREP, these variables were also 
computed as proportions with the exception of 
temperature.  Variables such as the proportion of days 
with liquid precipitation, the proportion of days with at 
least 12 hours overcast, and the proportion of days with 
a cold frontal passage were used. 

 
2.3 Statistical model 

While reliable estimates for the proportion of icing 
days could be generated for the large cities, a modeling 
approach must be taken for regions with smaller 
populations and thus less frequent air traffic.  Using 
linear regression, a model was fit to the large city data 
and then applied to the smaller cities.  Standard 
regression diagnostics were employed in examining the 

fit.  A maximum of two predictors was used in the 
models to prevent over-fitting of the data and poor 
prediction. 

              
3. RESULTS 

Individual models were fit for the months of 
November through March, when conditions are most 
favorable for icing in the CONUS.  While the predictors 
selected for the model varied slightly from month to 
month, they concentrated on a few meteorological 
criteria.  Most prevalent was temperature, followed by 
cloud cover and precipitation.  Table 1 shows the 
predictors selected for each time period and the model’s 
r2 (proportion of variability explained).  Figure 3 shows 
the contours of icing frequency (the proportion of days 
with at least one icing PIREP) based on the model fit 
and observations for the five-month period November 
through March.  Figure 4 shows contours for 
November, January and March individually. 
 
Period Predictors Model r2 

Nov.-Mar. Temperature 0.92 
  Drizzle    
Nov.-Mar. Temperature 0.90 
  Cold Frontal Passage   
Dec. Overcast 0.90 
  Temperature   
Jan. Overcast 0.92 
  Temperature   
Feb. Temperature 0.86 
  Overcast   
Mar. Temperature 0.88 
  Rain   

Fig. 2 – Region of the CONUS considered in the 
analysis.  Cities with populations over one million are 
indicated. 

Tab. 1 – Predictors used in each model and the 
corresponding r2.   

 
Immediately apparent from Figure 3 is a tendency 

for icing frequency to increase from the south to the 
north.  While this pattern is true in the continental US, 
it likely would change if data were available from 
Canada (Bernstein and McDonough, 2002).  
Temperatures there soon become too cold in the winter 
months for supercooled liquid water to exist.  The Great 
Lakes region of the Midwest seems to encounter icing 
most frequently: Figure 4 shows a maximum in that 
region for each of the months.  A seasonal change in the 
icing frequency can be discerned in the three plots, with 
the January contours showing the furthest progression 
of icing conditions to the south. 
 
3.1 Measures of uncertainty  

While informative, contour plots give little 
indication of the uncertainty in the data or model.  In 
order to quantify the variability in the estimates of icing 
frequency, two approaches were considered.  For the 
locations with over one million inhabitants and 
therefore reliable data, an assumption of first-order  



 
 
 
 
Markov dependence was used to estimate the sampling 
variance.  For the smaller cities, standard errors were 
derived from the regression model itself under 
normality conditions. 

First-order Markov dependence supposes that the 
state of a process is independent of past states if the 
state immediately previous is known.  Let Jt represent 
the occurrence or nonoccurrence of an icing PIREP.  
Specifically, 

1,   if an icing PIREP occurs at time 
0,   otherwiset
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The Markov assumption can now be expressed as the 
following conditional probability 
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In the icing scenario, the presence of icing on day t is 
independent of icing on days previous to day t-1, if we 
know whether or not there was icing on day t-1.  This 
assumption restricts persistence to a single day.  The 
measure of one step dependence was calculated as the 
autocorrelation coefficient for the binary “icing days” 
variable at each location.  The November – March time 
period was used to estimate the autocorrelation.  The 
equation  

ˆˆ ˆ(1 ) 1ˆvar( )
ˆ1

p pp
n

ρ
ρ

 − + ≈    −   
 

used by Katz (1983) estimates the variance of the 
sample proportion p̂ , where ρ̂  is the sample 
autocorrelation.  This formula is the familiar variance 
of the sample proportion inflated to account for 
dependence between the observations.  
 Figure 5 shows contours of the standard errors of the 
estimates for the November – March time period.  
These errors represent the uncertainty present in the 
observational sample of icing.  Predictably, more  

 

Fig. 3 – Contour plot of the November – March icing 
frequencies. 

 
Fig. 4 –Contour plots of the November, January, and 
March icing frequencies. 
 
uncertainty is present in the northern regions where the 
proportion of icing days is closer to 0.5.As a modeling 
approach was used in this study, it is also important to 
examine the uncertainty in the model chosen.  Figure 6 
shows the contours for the standard error of a mean 
response.  This plot essentially demonstrates the  



 
 
 
 

 
 
 
 

uncertainty in the predictions from the model assuming 
that the model is correct.  The minimum values occur in 
the middle of the region, one in eastern Kansas and 
another in Virginia.  The error then increases to the 
north and south of these areas.  Regression fits are most 
robust near the mean values of the predictors used.  As 
temperature is a very significant component of icing 
and included in the model, this minimum in the central 
part of the region is not surprising.  While the increase 
southward from the minimum areas is fairly gradual, to 
the north the change is quite drastic.  Note that the 
contours in Figures 5 and 6 are dissimilar because they 
represent different aspects of the variability.  Figure 5 
shows the variability associated with the seven-year 
sample of icing days that was collected, while Figure 6 
shows the expected error for the model predictions, 
without explicitly considering sampling error in the 
observations.           

 
 
4. CONCLUSIONS 
 

This statistical technique produced an estimate of 
icing frequency consistent with other analyses 
(Bernstein and McDonough, 2002, Fowler et al, 2002).  
Environmental conditions are much more conducive to 
the formation of supercooled liquid water in the 
northern portions of the eastern US than the southern.  
Most striking in this climatology was the local 
maximum in the Great Lakes region.  In examining the 
contour plots of the error surfaces, there was less 
certainty in the icing frequency estimates in the 
northern half of the country.  The higher rate of icing 
occurrence and the more extreme climatic conditions 
led to increased variability in the north as compared to 
the southern region.      

Fig. 5 – Standard error contours for proportion of 
observed icing days under first-order Markov 
dependence. While this method produced a reasonable 

climatology of icing, its usefulness is clearly limited by 
the absence of systematic and spatially unbiased 
observations as well as the dependence on surface 
observations alone.  The incorporation of atmospheric 
data could enhance this analysis.  However until 
automated observations of icing are available, all 
observation-based analyses will face significant 
limitations. 
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