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1. INTRODUCTION

The identification of systematic nonmeteoro-
logical changes in precipitation observations is crit-
ical to many users, including those in the power-
generating and transportation industries as well as
researchers doing climate change studies. At gage
sites, these changes commonly involve location,
elevation, exposure, or instrumentation, leading to
systematic increase or decrease in precipitation
amounts. Other, more subtle effects involve
changes in observation time, method, consistency,
etc. These kinds of changes may have a greater
effect on precipitation frequency, timing, variability,
and completeness than on the actual precipitation
totals. They may also be more difficult to find.

Although procedures exist to identify “change
points” in individual time series (Jaruskova 1996,
1997; Potter 1981), the large natural temporal vari-
ability in precipitation seriously complicates meth-
ods that rely solely on long-term characteristics
from a single observing location. Comparison with
other sites that are likely to share the same precipi-
tation characteristics can provide additional infor-
mation to the search for subtle changes. To facilitate
this process, it is useful to formulate time-depen-
dent measures of spatial correlation. Ultimately,
time series of these measures can then be subject-
ed to change-point analyses that may identify times
at which a station’s relationship to its neighbors has
significantly changed. In this paper we describe in-
dices based on verification scores (specifically, bias
and the equitable threat score) ordinarily used to
evaluate numerical forecasts. We then assess their
usefulness to climate station monitoring as pursued
in the National Climatic Data Center (NCDC)

“Health of the Network” project by applying them to
daily precipitation observations at U.S. cooperative
observer network sites in Iowa.

2. IDENTIFYING INHOMOGENEITIES

The extraction of often subtle climate
change signals from noisy climatological records
requires very careful monitoring of the perfor-
mance of climate stations. The immediate objective
of the work presented here is to establish statistical
procedures that can effectively and accurately
identify changes in the characteristics of precipita-
tion gage observations that adversely affect the
validity of temporal change data from the network.
In addition to degradation in data quality, changes
to be identified include unreported station moves
and instrumentation variations. The ultimate goal
of the project is to develop an automated system
that will provide “early warning” indicators of possi-
ble problems associated with data reported by
identified stations, so that data users can be aware
of such problems at an early stage.

Numerous approaches have been devel-
oped to identify and correct inhomogeneities in his-
torical climate time series (e.g., Peterson et al.
1998). However, these approaches generally have
been designed for retrospective studies and are
able to take advantage of relatively long time series
of observations both before and after the occur-
rence of the inhomogeneity (e.g., Alexandersson
1986; Hanssen-Bauer and Forland 1994). In con-
trast, the goal of this study is to develop methods to
monitor and identify inhomogeneities as soon as
possible after they occur or develop. Thus, it may
be necessary to develop methods that are sensi-
tive to more subtle changes in the series than is
required for retrospective analyses.
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Precipitation station data quality monitor-
ing has one distinct disadvantage that renders
many methods unfeasible: extreme spatial variabil-
ity. This variability prevents, for instance, any reli-
ance on evaluation of subtle differences in rainfall
totals, even over time periods of a month or more.
It also necessitates more innovative use of near-
est-neighbor analyses than a simple comparison of
temporal totals. Thus, it will likely be necessary to
focus on a variety of tools to identify possible
changes. Possible tools include time series
approaches (e.g., change point analyses, Kalman
filter) as well as spatial relationships among distri-
butional characteristics of the observations. Ulti-
mately, we anticipate that a variety of tools will be
applied and blended to formulate a warning indica-
tor that could be used to evaluate data as they
arrive at NCDC. Since they are tuned to be sensi-
tive to unique precipitation characteristics, verifica-
tion utilities like those applied here may also serve
as sensitive indicators of changes in a station’s
spatial relationship to neighboring observations.

Gonzalez-Rouco et al. (2001) describe an
approach for detection of inhomogeneities in pre-
cipitation data which involves comparisons of time
series of observations from neighboring stations.
This approach is based on the method described
by Alexandersson (1986) and relies on the use of
the normal distribution to model deviations in ratios
of values from a single station to values from the
neighbors. Unfortunately, several years of data are
required to allow detection of an inhomogeneity, so
the method is better applied for retrospective anal-
yses, rather than as a near-real-time warning indi-
cator.

3. COOPERATIVE PRECIPITATION DATA

Although it may become necessary to use
longer-period rainfall to control temporal and spatial
variability, we have chosen to first analyse daily pre-
cipitation data. These gage data are from the
TD3200 dataset observed by the United States co-
operative observer network and available on CD-
ROM from NCDC.

The results described here are from observ-
ing sites in Iowa. For these preliminary analyses,
this choice of state removes the complicating influ-
ence of extreme topography and allows some pre-
sumption of spatial homogeneity. In addition, the
observing sites in Iowa are well distributed across
the state and the data themselves appear to be of

good quality. In contrast to these simplifying charac-
teristics, however, we chose to analyse June 1994
observations, under the assumption that summer-
time convective precipitation typical of this month
would provide a rigorous test of the analyses.

Figure 1 depicts the rainfall in 60 of these sta-
tions during June. Since the time series are ordered
such that proximate series are constructed from ob-
servations at gagesites that are close neighbors
geographically, the consistency from series to se-
ries suggests data of generally high quality. This is
particularly true, for example, during the statewide
heavy rainfall on June 23. However, A few problem
sites appear. The three timeseries with no rain days
during the entire month, for instance, are stations
for which the station history information indicated
incorrect periods of operation; in fact, no observa-
tions exist in the dataset for these station during this
month (ramifications of this inconsistency between
data and station history will be discussed in the next
section). Similarly, as indicated by the lighter shad-
ing of several of its daily bars, station 133589 (index
13) fell prey to the common systematic problem of
rainfall accumulated over more than one day before
being reported. The large total precipitation on June
23 of more than 5 inches is a result of this reporting
problem. Other stations, like 131962 (index 3), ap-
pear to be out of lockstep with the majority of other
nearby sites.

These data and their idiosyncracies illustrate
the difficulty inherent in this endeavor: except for the
few time series with recognized systematic prob-
lems, it is not obvious which, if any, of the stations
are observing inaccurately. In a set of reasonable-
looking time series which still exhibit noteworthy dif-
ferences from neighbor to neighbor, what kind of
test is likely to pull out from these measurements
those stations at which observations have experi-
enced some change?

4. APPLICATION OF VERIFICATION SCORES

Using verification scores as proxy measures
of correlation between stations has some distinct
advantages over other measures. Since these
scores are tuned to be sensitive to the unique char-
acteristics of rainfall (its on-off nature and relative
infrequency, for instance), they are also more likely
to capture the variability of those characteristics.

Verification scores used here are the bias
computed with precipitation rate and the equitable



threat score (ETS). These and other precipitation
scoring algorithms are described in Wilks (1995).
Bias is fundamentally a ratio of total precipitation at
a target station or set of stations  (or, more com-
monly, model gridpoints) to total precipitation
observed at the same set of locations by a refer-

ence (verification) network. Hence, it is sensitive to
inaccuracies of measurement. The ETS, on the
other hand, measures how often the target and ref-
erence networks have “hits”, that is, both observe
precipitation over a certain threshold. In our study,
the threshold is low (.01 in), so a hit essentially

Fig. 1. Precipitation at selected cooperative observer stations in Iowa for each day during June 1994. Solid bar
heights are logarithmically scaled such that the height between series axes corresponds to three inches of precipitation.
Rainfall greater than 3 inches is indicated by the number in the open bars. Locations of gage stations (identified by index
numbers and station IDs along the vertical axes) are indicated by index numbers plotted on map insets. Dotted lines
(e.g., station index 13) indicate missing observations; bars with lighter interior shading were flagged as inaccurate.

June 1994



means that both networks have recorded nonzero
precipitation. Thus, the ETS is sensitive to correla-
tions of rainfall occurrence between networks but
not to correlations of precipitation amount.

Typical uses of verification scores are to
evaluate model performance. However, they can
also be used as measures of correlation between
pairs of observations. In our application, we
assemble pairs of observations for each Iowa gag-
esite by finding its 10 closest neighboring stations
on each of the 30 days in June 1994 when either
reported. Thus, each station-specific score compu-
tation includes 300 (in some cases of missing
reports, a few less than 300) comparison pairs of
daily precipitation observations.

The distribution of bias scores thus calculat-
ed is displayed on the panels of Fig. 2. As the leg-
end explains, the distribution in Fig. 2a was
produced before recognition of an inconsistency
between station history information in a separate
metacode file and the actual data. The result was a
set of 8 stations that did not make precipitation re-
ports during this month (a few reported tempera-
ture) but which were assumed in the computations
to have observed zero precipitation on each day.
The stations thus affected show up in the distribu-
tion as a secondary peak at bias 0. However, their
greatest impact is to inflate bias scores at neighbor-
ing target sites by contributing zero precipitation to
reference site totals. In Fig. 2b the inconsistency is
corrected by removing the affected stations as pos-
sible neighbors. They are, however, retained as tar-
get stations so that the secondary peak at bias 0
remains. Comparison of the two panels reveals that
the principal result of this correction is to narrow the
range of scores by moving some large values back
toward the median.

In a sense, the scenario of Fig. 2a repre-
sents a kind of inhomogeneity, albeit an ultimately
correctible one. Although not due to an observa-
tional problem per se, it is a type of mistake that is
not uncommon even for knowledgeable users, and
a technique that would identify it along with more
purely observational changes would be useful. The
secondary peak at zero bias is certainly a powerful
clue in this case.

For purposes of station monitoring, these
distributions would be used to flag stations whose
scores were clearly separated from the bulk of
scores or far enough out in either tail to be consid-

ered significantly worse than the general popula-
tion of stations. To test the bias scores in this way,
we created a “contaminated” station by doubling
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Fig. 2. Distributions of the bias score (see text)
for 173 stations in Iowa during June 1994. In (a), the
eight nonobserving stations with scores of zero were
improperly included as neighbors with zero precipita-
tion on each day of the month. In (b), these eight sta-
tions are correctly eliminated as neighbors although
their own bias scores of zero are retained. The vertical
line in each panel indicates the bias scores of a con-
taminated time series created by doubling each nonze-
ro observation of the original time series.
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one station’s precipitation. This station is clearly
toward the large-score tail of the distribution in Fig.
2b, but there are still several stations with higher
biases. Several of these “bad” stations are shown
on Fig. 1, and their situations are illuminating. For
instance, station 137726 (index 30) appears to
score poorly because it reported rain on more days
than its neighbors (it also appears to be out of step
with its neighbors, but this fact in itself would not
produce a high bias score). It might in fact be the
case that this site should be examined more
closely for possibly inconsistent reporting. Station
133108 (index 27), on the other hand, reports rain
on much the same days as its neighbors but still
has a high bias score. The apparent explanation in
this case is that on a couple of days of large precip-
itation it overdoes its report (June 18 is an exam-

ple) relative to its neighbors. This points out a
weakness of this bias computation, which is sensi-
tive to a few large errors on days of heavy precipi-
tation. Longer periods (a season, perhaps) of
observation would help to alleviate this effect.

Figure 3 illustrates an application that
appears more successful. Since the ETS tallies
“hits” and would be unaffected by a simple
increase of precipitation on the same day, we cre-
ated a contaminated station with another kind of
“inhomogeneity” in which the majority of rainfall
occurs a day earlier than reported in the original
time series. This station’s hits with its neighbors
should therefore be reduced, and indeed, this sta-
tion is found far enough into the low-score tail of
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Fig. 3. As in Fig. 2b except for the distribution of the equitable threat score (ETS). The vertical line indicates the
score of a contaminated station series created by displacing the majority of daily nonzero reports by one day.



the ETS distribution to be a candidate for screen-
ing. As before, the zero ETS peak contains the 8
nonreporting stations.

5. CONCLUSIONS

As suggested previously, these compari-
sons are just the first step toward a system to mon-
itor precipitation station performance. The location
of an individual station in these static distributions
are almost certainly less illuminating than would be
changes in their location. For instance, for reasons
of topography or natural variability, a station might
exhibit differences from its neighbors that result in
its location farther out in the tail of the distribution.
These differences might have nothing to do with
measurement inhomogeneities. If this station sud-
denly changes location in the distribution, however,
then an unreported change in gage characteristics
or observation practice is suggested and should be
checked out. By this reasoning, it may be more
valuable to monitor the relative change in perfor-
mance (as given by distribution location) than the
absolute magnitude of the measure of perfor-
mance.

The position of the contaminated observa-
tions toward the tails of the distributions suggests
some usefulness of verification scores as proxy
measures of correlation; examination of time series
of these scores will determine just how useful they
might be as monitors for station performance. It is
also clear, however, that different scores are sensi-
tive to different types of potential station inhomoge-
neities. Perhaps in the end a combination of
several measures of correlation will be necessary.
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