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1. INTRODUCTION 
 

One of the greatest challenges in meteorology today 
is long-range forecasting.  Weather-sensitive 
industries such as agriculture and energy use long-
range climate forecasts to project future crop yields 
and the amount of natural gas or electricity required 
for a season.  The Department of Defense (DoD) is 
also extremely in need of these forecasts.  DoD is 
responsible for examining the influences of long-term 
weather phenomena on its operations by using future 
seasonal outlooks, especially for severe weather 
phenomena.  Operational commanders routinely task 
the Air Force Combat Climatology Center (AFCCC) to 
produce outlooks for the upcoming severe weather 
season so they can tailor their operations to meet any 
threat.  One possible use of such forecasts in the 
United States is the realignment of aircraft to optimize 
their training and operational effectiveness.   
However, at the present time, AFCCC does not have 
the capability to produce such outlooks.  The goal of 
this research therefore, is to develop a predictive 
algorithm for the southeastern and south-central 
portion of the United States in support of AFCCC to 
use in forecasting the intensity of the spring and 
summer severe weather seasons. 
 
This research focuses on global circulation 
oscillations and SSTs and their effects on the spring 
and summer severe weather seasons in the 
southeastern and south-central portions of the United 
States.  Using standard statistical methods of 
regression and classification trees, this study creates 
a climatological algorithm for forecasting months 
ahead, the degree of severity of the spring and 
summer severe weather seasons for DoD installations 
within the area of interest.  
 
2. BACKGROUND 
 
2.1. Global Atmospheric Circulations 
 
Circulations and currents within the atmosphere and 
the ocean transport energy from one part of the globe 
to another.  Strong winds force the flow of the surface 
waters, which results in an upwelling of deep water in 

certain regions of ocean basins.  The combination 
between this upward convergence cooling surface 
SSTs and solar heating warming SSTs results in 
gradients along the ocean surface (Trenberth, 1991).  
Consequently, the oscillation between the cooling and 
warming SSTs induces increasing/decreasing 
pressure gradients over the ocean surface.  This 
change in pressure enhances global circulations and 
the strength of upper atmospheric winds illustrating 
the strong interaction between the oceans and the 
atmosphere (Trenberth, 1991). 
  
Predicting the interaction between the oceans and the 
atmosphere has been a major challenge for all 
scientists, however, it has been discerned that global 
circulations and SSTs play a major role on weather 
and climate of the world (Gatenbein, 1995).  To better 
understand global circulations, two approaches have 
been used to obtain temporal correlations:  the 
teleconnection method and the rotated principle 
component analysis (RPCA).  The teleconnection 
method uses meteorological parameters between one 
geographical location and correlates them with other 
point locations in its domain (Barnston, 1987).  A 
teleconnection usually includes two to four centers of 
action, with the strength of the correlation used to 
determine whether or not the global circulation is 
peaking or is of significant strength. 
 
The RPCA uses entire flow field values in a specific 
region of meteorological parameters to determine 
where the centers of action are, instead of pre-
assigning centers of action like the teleconnection 
method.  This process takes full advantage of large-
scale global circulation patterns to produce robust 
solutions.  There are several reasons why RPCA has 
not been fully used as the primary approach for 
analysis.  Teleconnections are simpler to compute 
and less removed from the original data, and 
understanding all aspects of RPCA is difficult because 
of its interpretability (i.e., what they actually mean 
physically).  However, both methods are analyzed to 
create indices across the globe.    
 
 
 



2.2. Sea Surface Temperatures (SSTs) 
 
The global circulations that moderate the atmospheric 
winds link the components of the atmosphere and 
ocean.  Above-normal precipitation over the United 
States is often associated with excessive moisture 
transport from the ocean and its associated frequent 
storm activities passing over the United States.  It has 
been suggested that the primary cause of drought is 
the change in the atmospheric circulation across 
North America by changes in SSTs (Trenberth, 1992).  
SSTs all over the globe are analyzed, and indices are 
created based on actual SSTs and their respective 
anomalies.            
 
2.3. Severe Weather Parameters 
 
Both global circulations and SSTs have a large but 
unknown effect on severe weather.  The primary 
variable controlling the enhancement in thunderstorm 
activity is the position and strength of the jet streams.  
The increase in southeastern United States 
thunderstorm activity during the 1997-98 season is 
directly attributable to the stronger than normal upper-
level polar jet stream across the region.  Increased 
baroclinicity associated with the enhanced jet 
produced a 100-200 percent increase in lightning 
flashes and lightning days along the Gulf Coast 
(Goodman, 2000).  This increase in the strength of 
the jet resulted from changing conditions in the Pacific 
SSTs.  However, the underlying feature is that SSTs 
and global circulations are not directly responsible for 
the formation of individual thunderstorms, but rather, 
they are directly related to synoptic flow patterns 
(Rhome, 2000).  Meteorologists are constantly 
searching for improved long-range severe weather 
forecasting techniques.  Their hope is to reduce 
weather-induced loss of life and property by 
investigating the interactions between the earth’s 
oceans and atmosphere.   
 
3. DATA AND METHODOLOGY 
 
3.1. Regions of Study 
 
Recently, Air Force Weather (AFW) reorganized into 
regional forecast Hubs across the United States 
known as operational weather squadrons (OWSs).  
This study encompasses two of the four continental 
Hubs; specifically, the 28th OSW at Shaw AFB and 
the 26th OWS at Barksdale AFB.  Their coverage 
includes the southeastern and the south-central 
portion of the United States.  Within each OWS area 
of responsibility (AOR), three bases were chosen for 
a comprehensive representation of the coverage 
area.  
The southeastern stations chosen were: 
 -Shaw AFB, South Carolina 
 -Warner-Robins AFB, Georgia 
 -Pope AFB, North Carolina.   
The south-central stations chosen were: 
 -Barksdale AFB, Louisiana 

 -Tinker AFB, Oklahoma 
 -Randolph AFB, Texas. 
 
3.2. Predictors 
 
The predictor data in this study are broken up into two 
sets of variables.   The first set is the teleconnection 
and RPCA indices.  For all indices except the TNH 
index, three consecutive monthly values, December 
through February were averaged to create a single, 
winter value.  In addition, just the February indices 
were examined since the averaging of the indices 
might factor out any trends near the end of the winter 
season that might prove crucial in finding correlations 
with the spring and summer severe weather seasons.  
As there were no February data for the TNH index, 
the TNH index will not be used in the February only 
comparisons, therefore, the averaging procedure was 
applied to the two months of December and January 
to create the TNH pattern’s winter index.  Winter 
values were chosen since these indices are highly 
significant during the winter season and the goal is to 
predict the spring and summer severe weather 
seasons based off of these highly significant winter 
indices.  The indices that were examined are the: 
 -Southern Oscillation (SO)  
 -North Atlantic Oscillation (NAO) 
 -Pacific/North American Pattern (PNA) 
 -West Pacific Pattern (WP) 
 -East Pacific Pattern (EP) 
 -Tropical/Northern Hemisphere Pattern (TNH). 
 
The second set of predictor data includes the SST 
indices that were also collected from the CPC.  
Specifically, the SST indices (Figure 8) that this study 
examined were the: 
 -North Atlantic (NATL):  5-20° North, 60-30° West 
 -Global Tropics (TROP):  10°South -10°North, 0-360° 
 -Nino 3.4 (NINO):  5° North-5° South, 170-120° West 
 -West Coast of United States(WESTUS)  
 
The indices were examined from December through 
February and averaged over the period to create 
single, winter values as well as using the February 
data by themselves.  These indices were not 
anomalies to SSTs, however, since they were the 
actual mean of the SSTs within their respective ocean 
basins.  Anomalies were not chosen over the actual 
SST data since this research examined only the 
winter season of SSTs, therefore using anomalies to 
factor out the seasonal effects is not necessary.  In 
addition, the winter values were examined each year 
of the 50-year POR, 1951-2000, and were also 
compared with the spring and summer severe 
weather season parameters. 
 
3.3. Predictand 
 
The data sets predicted are the severe weather 
parameters.  Each severe local storm season, defined 
as March though May for spring and June through 
August for summer, is described by specific 



parameters.  Any of the following parameters were 
used to illustrate severe weather events:   
 -Lightning data within 50 nautical miles 
 -Precipitation data greater or equal to 0.50 inches 
 -Tornado data within 50 nautical miles 
 -Thunderstorm observational data 
 
4. RESULTS 
 
4.1. Multiple Linear Regression 
 
Multiple linear regression uses the method of least 
squares fit and is the method of choice to perform 
traditional statistics.  Once significance of the model 
has been achieved, the coefficient of determination 
was checked to account for the total variation in the 
predictand (y-value) explained by all the predictors (x-
values).  Overall, R2 values ranged from about 0.10-
0.40, which are all rather weak correlations for uses in 
prediction, therefore no model was created to help 
with the final algorithm.  However, knowing that 
correlations do exist proves valuable uses in statistics 
and show that the indices do show some sign of 
relationship with precipitation >0.50 and thunderstorm 
events. 
 
Overall, even though R2 values were weak (<0.50) for 
all model runs, statistical conclusions can be drawn 
from the analysis.  First, there was no apparent 
advantage of looking at February indices over winter 
indices, however, this process was used again for 
data mining and regression trees since the data are 
already formatted and deeper relationships could 
have been overlooked.  Second, the proximity of an 
index to the region will increase the significance and 
eventually the correlation of the model.  Both the PNA 
and the NATL had greater influence on the 
southeastern region than other indices.  Finally, 
multiple linear regression showed that SST indices 
appeared more often in the model runs than did 
global circulations.  Even though R2 remained low, the 
results above provided helpful information in the data 
mining and regression tree processes.  Knowing what 
key indices to use for each model would aid in the 
tree building process and eventually into an algorithm 
usable by OWS forecasters.    
 
4.2. Classification and Regression Trees (CART) 
 
CART analysis deals with complex relationships 
involving several predictands and predictors, and was 
used in this research when traditional statistics had 
been exhausted.  From the thunderstorm, 
precipitation, and tornado data sets, CART 
established classification trees that predicted a 
categorical predictand.  These classification trees 
consist of binary decision rules that split nodes 
(decision points) either to the left or right based on a 
test against a significant predictive value and will 
continue to branch until a terminal node (final node) 
was reached (Burrows, 1992).  CART provided a way 
to examine data and discover important grouping 

cases to formulate rules and to make predictions.  An 
element of the CART analysis was validating the tree.  
There are several methods of validation, however, the 
10-fold cross-validation method was used in this study 
since it is an improvement over the traditional holdout 
method, where a certain percent is removed from the 
data, when dealing with a smaller sample size.    
 
Before any classification trees could be created, the 
thunderstorm, precipitation, and tornado data sets 
had to be categorized to best solve the problem to 
this research.  Just like the tradition statistics portion 
of the research, lightning data wasn’t used during the 
CART analysis due to the small size of the data set.    
The goal was to answer how intense the severe 
weather season would be, and a classification into 
below normal, normal, and above normal categories 
was achieved through ranking the data into equal 
thirds.  However, since all data sets contained 
seasonal values, the data couldn’t be split exactly into 
equal thirds, although for the thunderstorm and 
precipitation data sets, the data was split close 
enough to fit into the below normal, normal, and 
above normal categories.  After ranking and splitting 
the data into below normal, normal, and above normal 
categories, the classification trees were created.  The 
next step was to determine if the tree was the best 
tree for creating an algorithm for forecasters to use.  
In order to determine if the best tree was created, 
several factors had to be determined: 
 -the purity of the tree, 
 -the sample size of the terminal nodes, 
 -the cross-validation risk estimate. 
 
All of these factors were used to reach the 
improvement over climatology, which only was shown 
in the results if it was better than 0%.  First, the purity 
of the tree was determined.  Only terminal nodes of 
100% were used to obtain the highest improvement.  
Terminal nodes less than 100% were not chosen 
since the cross-validation risk estimate multiplied by 
any terminal node less than 100% would not result in 
any improvement above climatology.  Next, any 
terminal node sample size less than three would not 
be used since two years of data did not represent at 
least 5% of the thunderstorm and precipitation data 
sets.  This same process was used for continuity in 
the tornado data sets.  Finally, obtaining the lowest 
cross-validation risk estimate was achieved by 
rerunning trees with different stopping rules explained 
in the CART methodology section of this research.  
Subtracting the cross-validation risk estimate from 
100% would result in the tree accuracy.  Once the 
tree accuracy was determined, the difference from 
climatology was determined by subtracting the tree 
accuracy from the climatology.  Then, the 
improvement over climatology would be that 
difference divided by the climatology.  Once all 
improvements were shown to be above 0%, the 
criteria were used as determined from the tree to 
provide a forecast algorithm to predict the intensity of 
each severe weather category.   



Example forecast algorithm: 
 

Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Average

trop<27.60         
nino<26.60        
ep>-0.95          
nao<-0.20         
so<1.30

48% / 33% / 45%

Average

trop<28.10         
nino>26.60        
nao<-0.05         
so<-1.05

48% / 33% / 45%

Above Average

trop<27.60         
25.2<nino<26.2     

ep>-0.95          
nao>-0.20

48% / 33% / 45%

Above Average
27.6<trop<28.10    

nino<26.60        
ep<1.35

48% / 33% / 45%

Above Average trop>28.10 48% / 33% / 45%

Below Average

PNA<1.02         
WESTUS<22.90    

NAO<0.02         
EP<-0.15          

TNH>-0.04

44% / 33% / 33%

Below Average

PNA<1.02         
WESTUS>23.30    

NINO>26.60       
SO>-1.10          

WPO<0.65

44% / 33% / 33%

Average

PNA<1.02         
22<WESTUS<23   

NINO>26.60       
SO>-1.10

44% / 33% / 33%

Above Average

PNA<0.56         
WESTUS>22.90    

NINO>26.60       
SO<-1.10

44% / 33% / 33%

Barksdale 42% / 33% / 27%
 -0.75<wpo<-0.50   

natl<25.80Below Average

42% / 33% / 27%
wpo>-0.75         
natl>25.80         
nao<0.55

Below Average

Below Average PNA>1.02 44% / 33% / 33%

Below Average
PNA<1.02         

WESTUS<22.90    
NAO>0.02

44% / 33% / 33%

42% / 33% / 27%

Randolph

Below Average

trop<28.10         
nino>26.60         
nao<-0.05          

-1.05<so<0.25

48% / 33% / 45%

Below Average

trop<28.10         
nino>26.60         
nao>-0.05          
wpo>-0.95         

westus<25.70

48% / 33% / 45%

Tinker

South-central summer thunderstorm forecast algorithm.

Above Average wpo<-0.75         
natl<25.40

*winter indices are capitilized  
 
If the criteria were not met at all, then climatology 
would still be the best prediction, however, there was 
a significant increase in the algorithm over climatology 
using all three severe weather parameters.  Since the 
three weather parameters are dependent sets with 
each other, it would be difficult to combine the three 
data sets into one severe weather product, and a lot 
of information would be lost in the combination 
process.  The advantage of keeping the data sets 
individualized was that specific long-range forecasts 
could still be made with each severe weather 
parameter.  In addition, the three severe weather 
parameters only partially define the severe weather 
season since there are other parameters that could 
be used to define it at as well.  Therefore, the 

algorithms in the tables above are to be used 
separately to characterize the severe weather 
season.   
 
Overall the CART results were positive. They 
confirmed that algorithms with reasonable 
predictability could be produced for forecasting the 
intensity of the severe weather season.  The 
predictive tables produced in this study are deemed 
ready to use by AFCCC and OWS forecasters to 
answer such questions each year.   
 
5. CONCLUSIONS 
 
The main goal of this research was to create a 
climatological algorithm if statistical relationships were 
found between spring and summer severe weather 
parameters and SST and global circulation indices.  
Forecast algorithms were created using CART 
analysis, specifically classification trees, which 
improved upon climatology on multiple cases.  
Thunderstorm data showed improvements up to 45%.  
Precipitation data showed improvements up to 73%.  
Finally, tornado data showed improvements up to 
132%.  
 
CART analysis and traditional statistics provided 
conclusions about each data set as well as regional 
trends.  First, they showed that there was no 
advantage of using February indices over winter 
indices, therefore, both indices were used in the final 
classification tree process and climatological, forecast 
algorithm.  Second, the regional trends identified in 
traditional statistics showed that the PNA and NATL 
indices correlated well with the three stations in the 
southeast.  Finally, CART analysis showed that the 
EP showed the best relationship several times with 
the south-central spring and summer precipitation 
forecasts, and the NAO showed the best relationship 
several times with the southeast spring and summer 
tornado forecasts.  Overall, CART results identified 
positive trends that existed between the severe 
weather parameters and the SST and global 
circulation indices.  CART confirmed that 
climatological, predictive algorithms could be 
produced for forecasting the intensity of the severe 
weather season. 
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