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1.  Introduction 
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Commercial (Part 121/129), air taxi (Part 135), 

and general aviation (GA - Part 91) encounters with 
turbulence continue to be a source of occupant 
injuries, and in the case of GA, fatalities and loss of 
aircraft.  According to a recent MCR Federal survey of 
NTSB accident data (1983-1997), turbulence 
contributed to 664 accidents leading to 609 fatalities 
(mostly GA), 239 serious and 584 minor injuries, for an 
estimated average annual societal cost of $134 M.  
Although fatalities related to commercial airline 
turbulence encounters are almost nil (only one in this 
time period), turbulence-related injuries still account for 
a significant fraction (about 30%) of all weather related 
Part 121/129 incidents.  The average number of air 
carrier turbulence-related injuries according to the 
NTSB records is about 45 per year, but these are of 
course only those that were actually reported. The 
actual number is probably higher: one major carrier 
reported almost 400 turbulence encounters leading to 
injuries over a 3 year period; another estimated about 
200 turbulence-related customer injury claims per year.  
Costs to the airlines are difficult to establish, but one 
major air carrier estimated it pays out “tens of millions 
per year” for customer injuries, and looses about 7,000 
days in employee injury-related disabilities.  The vast 
majority of air carrier turbulence incidents occur above 
20,000 ft, where passengers are more likely to be 
unbuckled.  The MCR report also estimated that only 
about 30% of these upper-level incidents were forecast 
based on previous turbulence pilot reports (PIREPs) or 
valid AIRMETs.  Hence better upper-level turbulence 
forecasts should substantially reduce injuries to 
passengers and crew. 

Figure 1.  Time series of true skill statistic 
(TSS) for ITFA thresholded at 0.15 (■) and 
AIRMETs (●) Jan 2000 – Dec 2001. 

Over the last four years NCAR/RAP and 
NOAA/FSL, under sponsorship from the FAA Aviation 
Weather Research Program (AWRP), have been 
developing a completely automated turbulence 
forecasting system for upper-level (>20,000 ft) 
turbulence.  According to the NTSB records, over half 
of the encounters at these levels are in the so-called 
clear-air turbulence (CAT) category.  This forecasting 
system, called ITFA (Integrated Turbulence 
Forecasting Algorithm) concentrates on nowcasting 
and forecasting CAT above 20,000 ft.  Convective 
sources of turbulence are not explicitly accounted for.  
Using PIREPs for verification, a time history of ITFA 
performance for a specified threshold value of 
moderate or greater (MOG) turbulence, is given in Fig. 
1 in the form of the true skill statistic (TSS). The 
____________________________________________ 

Figure 2.  ITFA PODY vs. PODN performance 
(heavy line) compared to several individual 
diagnostic performances (thin lines) for 0 hr 
forecast (i.e., analysis). 
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Aviation  Weather  Center  manually-derived  AIRMETs 
TSS are included for comparison.  These were derived 
using NOAA/FSL’s Real-time Verification System 
(RTVS) (Brown, et al., 2000), which derives daily 
statistics for probabilities of detection of MOG events 
(PODY) and null events (PODN), where an event is a 
valid PIREP.  By this measure the two techniques 



(manual and automated) give similar performance.  
Figure 2 shows the current ITFA performance relative 
to individual diagnostic performance on a PODY vs. 
PODN plot, where (1,1) would be perfect performance, 
for a range of MOG thresholds.  Over most of the 
range, the ITFA combination gives superior results. 

The ITFA procedure has been described 
elsewhere (Sharman et al. 2000), but briefly, it involves 
the following four-steps: 
(1)  Derive a set of turbulence diagnostics from 
numerical weather prediction (NWP) model output.  
The current ITFA calculates some 31 turbulence 
diagnostics relevant to upper-level CAT.  For a list of 
these see the Appendix in Sharman et al. (2000).  
However, some of these have been found to perform 
poorly overall, so are computed but not used in further 
processing. 

Figure 4.  Normalized densities of TI2 
corresponding to MOG (▲) and null (∆) 
PIREPs.  Vertical lines are median values. (2)  Determine a mapping of diagnostic values to a 

turbulence potential.  This involves establishing 
thresholds for each diagnostic that define a set of 
minimum values for a turbulence category (light, 
moderate, severe) on a 0-1 scale. 
(3)  Score the performance of each individual 
diagnostic against the available observations, also 
mapped to a 0-1 scale.  Currently, the only available 
observations are in the form of pilot reports (PIREPs) 
which NCAR receives routinely from NOAA’s Family of 
Services.  Soon we expect to be receiving quantitative 
in-situ measurements of turbulence for ACARS 
equipped aircraft (see Cornman, et al., 1995, for a 
description) that will significantly improve the quality 
and quantity of our observational database. 
(4)  Combine the different diagnostics as a weighted 
sum with the weights determined dynamically from the 
results of step 3. Figure 5.  Same as Fig.4 but for ITFA using 16 

diagnostics. Each of these steps has involved research into 
optimal methods for accomplishing that step, and the 
remainder of this paper will summarize some of the 
results of that research.  
 
2.  Diagnostics and thresholding 
 

As mentioned in the introduction, currently 31 
different diagnostics of CAT are computed within ITFA.  
These are primarily intended to diagnose regions of 
high turbulence potential due to the presence of upper-

level fronts and jet streams.  Other classes of upper-
level turbulence diagnostics are under development 
e.g., at FSL and NASA (Kaplan, et al., 2000) that 
should lead to better diagnoses of turbulence 
associated with sharp upper-level ridges and other 
regions of highly unbalanced flow.  An example of the 
effect of the number of indices used for a fixed MOG 
threshold of 0.375 on ITFA performance is shown in 
Fig. 3.  In general, we have found fewer indices is 
better, and the current version uses 11 diagnostics in 
the actual ITFA combination. 

Part of the difficulty with any diagnostic is its lack 
of ability to discriminate between different levels of 
turbulence intensity, again based on comparisons to 
available PIREPs.  Figure 4 demonstrates the 
discrimination power for a common turbulence 
diagnostic TI2, due to Ellrod and Knapp (1992).  Here 
the two curves represent the conditional density of 
values of TI2 corresponding to 1) null and 2) MOG 
PIREPs.  Ideally, the two curves should not overlap, 
but in fact the overlap is substantial, so that the median 
values, drawn as vertical lines, are not widely 
separated.  In these normalized coordinates, the 
degree of discrimination can be inferred from the 
distance between the medians of the two curves.  
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Figure 3.  TSS of ITFA as a function of the number 
of separate diagnostics used. 



Almost all individual diagnostics show very small 
separations between the medians, in fact most are 
worse than TI2 by this measure, but the ITFA 
combination is better in this regard (Figure 5). 

Based on figures like Figure 4 we are able to 
estimate threshold values for each of the diagnostics.  
These can of course be adjusted seasonally, or they 
can be adjusted dynamically with each new forecast.  
Dynamic mapping can also be performed by assuming 
those diagnostic values that are in the upper say 97% 
of the range of computed values correspond to MOG 
turbulence values.  This seems to give more robust 
results than statically derived (constant) thresholds.  
For example, in one case study the TSS of ITFA using 
static thresholds  applied to 11 indices was about 0.02, 
but with the 97% dynamic thresholding criterion the 
TSS increased to about 0.15, and with a 95% dynamic 
threshold the TSS increased to about 0.16. 

Figure 6.  Effect of POD performance on 
the optimization strategy used.  □ ITFA, ○ 
logistic regression, ∆ neural nets, based 
on average of 3-12 hr forecasts average. 

 
3.  Scoring and optimizing strategies 
  

Once the diagnostic thresholds are established, 
either statically or dynamically, the next step is to 
determine how well the diagnostic can account for 
current observations.  To do this PIREPs are collected 
within some time window of the NWP analysis time, 
typically 60 to 90 minutes, and at each location 
corresponding to a PIREP the thresholded diagnostic 
value is compared to the PIREP intensity value.  
Considering the PIREP as “truth”, diagnostics that 
agree well with the PIREP are given a higher “score” 
than those diagnostics that do not agree well.  For 
example if diagnostic A at the location of a moderate 
intensity PIREP was above its threshold value for 
moderate turbulence the score assigned would be 
relatively high, whereas if diagnostic B was below the 
light intensity threshold, the score assigned would be 
relatively lower.  The score can be determined in a 
number of ways, for example by forming the difference 
|PIREP intensity - diagnostic intensity| - squared or 
unsquared, and summed over all PIREPs or by 
computing PODY,N statistics.  The difference scoring 
has finer granularity but the PODY,N scoring provides 
a more consistent measure of overall performance. We 
have not found substantial differences in overall 
performance between these two methods. 

Figure 7.  The effect of training on POD 
logistic regression performance.  Lower 
curve: no training, upper curves: increasing 
amounts of training.  All forecast times are 
used (0-12 hrs). 

Once each diagnostic has been scored relative to 
every other diagnostic, it still remains to combine the 
diagnostics in some manner consistent with the relative 
scores.  Methods for optimizing the information from 
the suite of diagnostics is an ongoing area of research.  
The current optimization strategy uses a simple 
weighted sum of the indices with the weights inversely 
proportional to the minimum squared difference score 
of each index computed from the latest observation 
time.  This simple strategy seems to work well, 
although other methods such as logistic regression 
(e.g., McCullagh, 1983) or neural nets (e.g., Cheng 
and Titterington, 1994) show slightly better 
performance (see Figure 6).  Experiments with training, 
where more than one observation period is used to 

establish the scores and weights does seem to be 
beneficial.  Figure 7 shows the effect of training on 
logistic regression performance for the same data as 
was used to construct Figure 2.  Increasing the number 
of training sets (observational times) displaces the 
PODY-N curve upward so that performance is 
enhanced for all threshold values. 
 
4.  Discussion 
 
 The ability to provide accurate aircraft-scale 
turbulence forecasts is hampered by several 
fundamental difficulties.  First, the resolution of current 
numerical weather prediction (NWP) models (several 
10s to 100 km roughly) is about two orders of 
magnitude too coarse to resolve aircraft-scale 
turbulence (roughly 100s m).  Therefore, aircraft-scale 
turbulence diagnoses/predictions must be based on 



resolvable scale features.  However, and this is the 
second difficulty, the performance of turbulence 
diagnostics is hampered by our current lack of 
understanding of the linkage between NWP observable 
scale features and aircraft-scale turbulence.  An 
implicit assumption in all these diagnostics is that 
turbulence generating mechanisms have their origin at 
resolvable scales and the energy cascades down to 
aircraft scales, but it is unclear what the exact 
mechanism is that creates small scale motion from the 
larger scales.  Third, even if it is true that aircraft-scale 
turbulence has its origins at the resolvable scales, the 
turbulence forecast system has all the inherent NWP 
errors associated with the resolvable scales.  Fourth, it 
is not clear that the current suite of turbulence 
diagnostics is in fact capturing all the relevant 
information that the larger scale representations can 
provide.  For example, turbulence associated with 
upper-level ridges is poorly modeled by the current 
suite of indices (e.g., Knox, 1997).  Finally, there is the 
difficult matter of verification.  In the ITFA system we 
are using PIREPs for tuning and verification.  But the 
individual PIREP is subject to spatial and temporal 
errors, and is subjective in its intensity rating.  Further, 
the PIREPs are variable in space and time, and in 
particular undergo a strong diurnal period 
(considerably fewer at night) making in difficult to 
perform consistent verifications over all time periods.  
As mentioned earlier, the quantitative automated in-situ 
reports (Cornman, et al., 1995) should eliminate most 
of the uncertainty associated with PIREPs but this is 
probably a couple of years away. 

The following research areas are being pursued to 
obtain better overall performance within the ITFA 
framework: 
• Better diagnostics.  This is a continued research 

area in the many laboratories and universities.  
But any diagnostic must be judged by its overall 
performance, not just its performance on a few 
selected cases.  In addition, information about 
when a particular diagnostic performs well could 
be used to dynamically modify its weight within the 
ITFA framework.  But this situational dependence 
can only be assessed through careful case 
studies. 

• Extension to lower altitudes.  Most of the current 
diagnostics within ITFA implicitly attempt to 
detect/forecast jet stream/upper-level frontal 
turbulence.  However, others are more general, 
e.g., the Richardson number, and these 
diagnostics might be extendable to altitudes below 
20,000 ft, allowing a mid-level ITFA. 

• Dynamic tests for discrimination.  As shown 
earlier, the discrimination power of most 
diagnostics is poor on the average, and for 
particular cases, can be nil.  The discrimination 
power could be assessed dynamically, and 
weights within ITFA adjusted accordingly.  

• “Local” fits.  Within the current ITFA framework, 
the best fit of diagnostics is attempted for the 

entire volume of atmosphere above some level.  
Better fits are probably attainable to subvolumes, 
which could be overlapped to give smooth 
transitions from one subvolume to another. 

• Better optimization strategies.  Although several 
optimization or weighting strategies have been 
tried, others are available and it may be that one 
of those methods leads to demonstrably better 
performance.  Also, better methods may be 
derived for combining indices when several sets of 
indices are intended to describe one turbulence 
generation source, and another set describes a 
different generation source. 
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