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1. INTRODUCTION

To understand and predict the evolution of cloud
systems, knowledge of the particle size distribution

(PSD) is necessary. The successful representation of
ice PSDs by exponential size distributions for particle
diameters greater than a few hundred microns has

been well documented (e.g. Lo and Passarelli 1982).
Particles smaller than a few hundred microns have
PSDs which usually differ from that of the large

particles and this has led to some workers choosing to
use a modified gamma distribution to represent these
distributions to capture the behaviour of the smaller

particles (Mitchell 1991). We believe that difference in
the PSD behaviour at small and large sizes indicates a
difference in the physics controlling the evolution of

the PSD. For small particles, particle production
(nucleation and/or breakup) and diffusional growth
dominates the evolution of the PSD while for larger

particles the evolution of the PSD is dominated by
aggregation (Field, 2000). In this paper we will
demonstrate that the large particle ice PSD mode

satisfies a scaling relation exhibited universally by
aggregating systems and that the exponential
distribution is a natural consequence of aggregation.

The descent of ice crystals is controlled by
aerodynamic effects that lead to differential

sedimentation throughout the cloud layer. This allows
ice crystals to come into contact and aggregate to
form larger crystals. Ice crystals tend to approach

each other on ballistic or straight line trajectories, but
every collision does not necessarily result in a sticking
event. Therefore, to some extent aggregation of ice

crystals may be limited by the number of collisions it
requires to form an aggregate rather than the time
required for the particles to come into contact with one

another. This type of aggregation is known as
Reaction Limited Aggregation (RLA). If the sticking
efficiency upon contact between ice crystals were

unity then it would be the time it takes for the particles
to come into contact which would be important in
controlling the aggregation rate. This type of

aggregation is known as Diffusion Limited Aggregation
(DLA)(Meakin, 1992 and references therein provide an

overview). Computer simulation and experimental

evidence (Lin et al, 1990) suggest that aggregates
generate fractal structures that have a fractal
dimension, df=2.1 for RLA and 1.8 for DLA. This value

is equivalent to the exponent in ice crystal mass--
dimension relationships and is in good agreement with
values of ~2 found for ice aggregates. Researchers

(see Meakin, 1992) looking at colloidal systems and
computer simulations also discovered that the PSDs
studied in those cases evolving through the

aggregation process could be scaled successfully
using:

where N(M,t) is the time dependent PSD as a function
of particle mass, M0(t) is a mean mass representative

of the PSD (e.g. the number weighted mean mass),
θ  is a scaling exponent and f(M/M0(t)) is a scaling
function that is common to all N(M,t) and independent

of time. Furthermore they find that by multiplying eq. 1
by MdM and integrating over all M that for
conservation of mass θ=2. So, given M0(t) and the

scaling function f(M/M0(t)), the PSD N(M,t) can be
found.

We have used data acquired from 14 lagrangian spiral
descents carried out during the TRMM (Tropical
Rainfall Measurement Mission), FIRE-1 (First ISCCP

Regional Experiment) and ARM (Atmospheric
Radiation Measurement) campaigns. During the
spirals the aircraft drifted with the wind and descended

at ~1 m s-1. The analysis of the data relies on being
able to treat the data as if it were obtained in a steady
state cloud. In reality clouds vary both spatially,

temporally and are affected by sedimentation, but
"...for a source which varies slowly in time, there can
be a region below that behaves as if the source were

infinite and steady…" (Lo and Passarelli, 1982) when
sampled with a lagrangian descent. For each ~1 km of
aircraft track ice water content and precipitation rate

were computed using a 'two-parameter' method
described by Heymsfield et al. (2002a) that makes use
of ice particle projected area as well as diameter.



2. CONSERVATION OF ICE MASS FLUX DENSITY

Bearing in mind the assertion that we are able to treat

a region of spatial and temporally varying cloud as if it
was in steady-state when we sample it with a
lagrangian descent then we can proceed as follows.

Consider the following scenario: in an ideal steady-
state cloud, mass is continually replaced at cloud top
at a constant rate and transported to lower altitudes by

sedimentation while aggregation is occurring. For this
scenario no diffusional growth, sublimation or melting
is considered. It can be seen that aggregation will lead

to larger particles and hence greater fall speeds lower
down in the cloud and so ice water content (IWC) will
decrease with increasing depth, but ice mass flux

density will be conserved .

Aggregation phenomena have been studied

extensively using computer simulations (see Meakin,
1992 for an overview) and it has been shown that the
evolution of PSDs controlled by aggregation can be

scaled successfully using eq. 1 which can be rewritten
as

where, N(D,t) is the PSD at time t, D1(t) is an average

diameter for the PSD at time t, θ is a scaling exponent,
and g(D/D1(t)) is the scaled function. In this paper the
average diameter, D1(t), is defined as the ratio of the

first and zeroth moments of D. In a non-sedimenting
system a value for θ  can be found by conservation of
mass, but in a sedimenting system that has reached

steady state it is ice mass flux density that is
conserved. So, plotting D1(t)

θ N(D,t) versus D/D1(t) will
result in the collapse of the PSDs onto a single curve.

Given the scaling relation the exponent θ can be found
from conservation of ice mass flux density, φ

where m(D) and v(D) are the mass and fall velocity of

a particle with diameter, D. Assuming the following
power laws represent the mass and fall velocity:
m=αDβ, v=aDb and letting αa=η eq. 3 becomes

and on letting x=D/D1 and rearranging we obtain

The integral on the right hand side is constant and so

the mass flux, φ, will be constant if

We will see in section 3 that if we use the scaling

suggested by eq. 5 then we will get an adequate
collapse of the data without any assumptions being
made about the form of g(x). However, the function

g(x) is a solution to the Smoluchowski equations and
the results of numerical simulation (e.g. Leighton
1980) show that g(x) can have the general form,

where ν controls the shape of the PSD at small sizes.
The normalisation factor, A, can be obtained by
substituting eq. 6, 7 into 4 to give

which results in the following expression for N(D,t)

when eq. 2, 7 and 8 are combined

where Γ is the gamma function. For simplicity we set
ν=0 to obtain

Eq. 10 can be compared directly with standard form of

the exponential distribution used for PSDs that was
introduced by Gunn and Marshall (1958) to represent
observed snow PSDs.

where N0 is the y-intercept of the exponential
distribution and λ is the gradient in log-linear space.
By inspection it can be seen that



If we had initially assumed an exponential distribution
(eq. 11) for the PSD and integrated to obtain the ice
mass flux density we would have arrived directly at eq.

10 (cf Mitchell, 1988 eq. 15), but by not assuming a
form for the PSD we were still able to determine the
value that is required for the exponent θ  to conserve

ice mass flux density.

To obtain θ  from the observations we use the

assumption that for a constant ice mass flux density,
or to use the more familiar term - precipitation rate, a
plot of N0 verus λ in log space will have a gradient of θ.

3. AIRCRAFT OBSERVATIONS

Data from a lagrangian spiral descent carried out on
the 9th March 2000 for the ARM field program are
presented to demonstrate the scalability of ice PSDs.

This flight was carried out in cirrus uncinus and started
at cloud top (-50ºC, 9500m) and descended to cloud
base (-28ºC, 6600m).

Fig.1 Particle size distributions obtained at different altitudes.

The narrowest PSD was obtained at the highest altitude in

the cloud, the broadest near cloud base.

 Figure 1 shows PSDs averaged over each loop below
9000 m where the aircraft was in cloud (~15 km of
aircraft track). Using a value for θ  (=3.9) obtained

from a log-log plot of N0 verus λ the scaled spectra
collapse onto a well defined function and even the
mode between 200--500 µm lines up quite well (fig. 2).

It can be seen that just using the scaling factor D1
θ

results in the data collapse onto a well defined
exponential curve for D/D1>2.

Fig.2 Scaled PSDs from fig. 1.

By using the estimates of precipitation rate, P,
computed using the ’two-parameter’ method and the

measured PSDs we looked at how θ  varied. For each
descent the ~1km PSDs were binned according to P.
For each P bin on each descent plots of N0 versus

λ  generated estimates of θ. The result of this exercise
are shown in fig. 3.

Fig.3 plot of θ as a function of P for the 14 flights. Triangle:

TRMM, diamonds: ARM, squares: FIRE1. The vertical line

represents two standard deviations.

What fig. 3 shows is that it is possible to choose a θ
value derived from a set of m-D, v-D power law

relations combined with an exponential PSD that will
give estimates of P consistent with those determined
from the two-parameter method using the actual

measured PSD. We know that P and θ are physically
linked because the value of θ is dependent upon the
conservation of ice mass flux density. However we

cannot necessarily say beforehand how θ  will vary
with P if at all. Figure 3 shows that θ  is correlated with
P and that θ  values start off high at low P values and

eventually attain a value of 3-4 for P>0.5 mm hr-1. We
suggest that the value of θ  is controlled directly by the
particle habit which may be selected to some extent by



the process of binning P (e.g. synoptically generated

cirrus has low P values) and the amount of
aggregation that has occurred. The scatter in θ 
probably reflects the variation in primary crystal habit

and initial growth conditions soon after nucleation. An
additional factor is that high precipitation rates tend to
be correlated with larger D1 values. Hence, mass and

fall velocities are weighted by the larger particles that
also tend to have the lower β  and b values.

Using expressions derived for η, θ as functions of
estimates of P obtained from the two parameter
method for each of ~2500 ~1km PSDs we have

attempted to scale all of the measured PSDs from the
14 TRMM, ARM and FIRE1 flights considered onto a
single curve by multiplying dN/dD by ηΓ(θ)D1

θ/φ. We

can also obtain the best possible scaled function,
given the inherent natural variability, by multiplying
dN/dD by the measured ηΓ(θ)D1

θ/φ, that is 1/N0. Figure

4 is a two dimensional histogram of all the scaled
PSDs. The binned frequencies have been normalised
for each D/D1 interval. The dashed line is the

overplotted exponential function exp(-D/D1) that the
scaled PSDs are expected to collapse onto. The
contour encompassing the greatest area contains 80%

of the data and each subsequent contour contains
20% less. The exponential function fits well for 1 <
D/D1 < 9. For D/D1 < 1 the small end of the PSD is not

dominated by the effects of aggregation and so the
scaled function is not expected to apply. So, given
D1(t) and P the PSD can be found. Hence, D1 and P

are required to estimate IWC and radar reflectivity.

Fig. 4 contour plot of 2500 scaled spectra. Each contour is a

quintile of the data. The dashed line is the function exp(-

D/D1).

4. SUMMARY

Similar to other aggregating particle systems it is seen
that PSDs evolved through ice crystal aggregation are

scalable when it is assumed that ice mass flux density
is conserved during aggregation. This scalability
occurs in spite of the fact that the numbers of

component crystals in the aggregates are only of order
10 compared to other colloidal systems where
aggregates can be composed of many orders of

magnitude more component crystals. The form of the
scaled PSD is exponential out to at least 9 times the
number weighted mean diameter, D1.

The scaling exponent θ  is correlated with precipitation
rate and approaches a value of 3 for large precipitation

rates. Consideration of theoretical arguments allows
the quartet of parameters necessary to state the
mass-diamater and fallspeed-diameter power law

relations explicitly to be determined. This implies that
the mass exponent, β, approaches 2 for large
precipitation rates.

The introduction to a GCM of a prognosed mean
diameter in tandem with IWC would lead to a more

accurate treatment of the ice phase.
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