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1.  INTRODUCTION

Since 1998 a three level, primarily statistical,
quality assurance system for temperature observations
has been under development at the National Climatic
Data Center.  Each level deals with a different time
perspective and different classes of errors.  As
described in the 12th Conference on Applied Climatology
by Menne and Duchon (2000), the three levels and
associated classes are:

Level 1: Short-term perspective (daily values)
class A: internal consistency errors; detected and

corrected by logic tests
class B: system errors; detected and adjusted for by

rules based expert systems
class C: inhomogeneities; detected by statistical

tests

Level 2: Medium-term perspective (monthly values)
class C: inhomogeneities; detected by applying

statistical tests to time series of updated
monthly means approximately 10 years in
length

Level 3: Long-term perspective (annual values)
class C: inhomogeneities: detected and adjusted for

by applying statistical tests to records
longer than two decades

A test involved in Level 1, class C error
detection is discussed by Menne and Duchon (2001)
and in Level 3 by, for example, Peterson and Easterling
(1994) and Easterling and Peterson (1995).  The
purpose of this paper is to explore application of an
existing maximum likelihood technique to the detection
of inhomogeneities in monthly mean maximum and
minimum temperature observations (Level 2 class C) at
a given station called the candidate station.  The tests
for class C errors at Levels 1 and 2 are part of a
strategy aimed at reducing the necessary time between
the occurrence and detection of inhomogeneities.  The
methods developed for use at these levels depart from

many existing methods by evaluating daily and monthly
time series rather than the more common approach of
using annual averages. This increases the number of
observations available for analysis in a given time
interval, an important issue when early detection is
desired, but also raises new concerns, such as the
presence of the annual cycle in the time series, that
must be addressed.

While there are two general types of
inhomogeneities, a step-change or shift and a trend,
here only a shift in the average value or level of the
candidate series is considered.  The term 'monthly
temperatures' is used to represent either monthly mean
maximum or monthly mean minimum temperatures.
The term mean temperature for January, for example,
indicates that all available January temperatures (i.e.,
monthly mean maximums or minimums for 10 or so
years) have been averaged.

2.  MAXIMUM LIKELIHOOD RATIO TEST

A practical approach to determining whether a
candidate station has an inhomogeneity in temperature
is to compare its time series of monthly temperatures to
a reference series.  A convenient way to form a
reference time series is to average monthly
temperatures from surrounding stations that have a
climatology similar to the candidate station.  This is the
basis for the inhomogeneity test developed by
Alexandersson (1986).  A brief mathematical description
of the maximum likelihood methodology developed by
Alexandersson (1986) and Alexandersson and Moberg
(1997) follows.

The comparison between candidate and
neighbor time series can be expressed by
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where yi and xji are monthly temperatures for the
candidate and each of the k neighboring stations,
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respectively, and Dj are correlation coefficients between
the candidate and each of the k surrounding stations.
The quantities with an overbar are mean monthly
temperature (see previous section), one for each month
of the year, taken over the time series of length n.
Weighting the candidate's neighbors with the square of
the correlation coefficient ensures that those neighbors
that have greater variance in common with the
candidate carry more weight in creating the reference
series than those with lesser variance in common.  Thus
the q-time series in (1) provides the departures of the
candidate series (1st term) from the reference series
(2nd term).

To form the likelihood ratio test the q-series
needs to be standardized according to the usual
expression
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Assuming that (2) is normally distributed, a single shift in
the level of the candidate (y-series) can be determined
using the null hypothesis Ho and alternative hypothesis
H1 given by
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where N(g,h) indicates normal distribution with mean g
and standard deviation h.  If Ho is rejected in favor of H1,
the indication is that there has been a shift in the level of
the y-series.  The standard form for the likelihood ratio
test statistic is (Wilks 1995 p. 135)
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where the bracketed term is the ratio of likelihood
functions and is given by
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in which the numerator and denominator are directly
proportional to normal probability density functions of
the z-series.  If the ratio in (4) exceeds an appropriate
critical value there is a statistical basis for claiming the
mean level of the y-series from i = (1,a) is different from
the mean level from i = (a+1,n).  The criterion for
rejection, derived from (3) using (4), in which the

maximum likelihood estimators for 1z and 2z are their
sample means, can be shown to be
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where C is the critical value corresponding to a selected
level of significance.  We have determined critical
values of C for 2.5%, 5%, and 10% levels of significance
through extensive simulations of time series of standard
normal deviates.  The results are, on the whole, similar
to Alexandersson and Moberg (1997) but show some
systematic differences.

Given a z-series, the value of a is
systematically changed from some small value > 1 to
some large value < n.  For example, if a = 6 and n =
120, then 1z in (5) is calculated from the first 6 months
of the series and 2z from the remaining n-a = 114
months.  Next, a is increased by 1, 1z is recalculated for
the first 7 months and 2z for the last 113 months.  The
procedure is repeated until a approaches n.  A new
value of T is calculated for each combination (a, n-a).  If
T > C for one or more combinations, a shift or step-
change in the y-series is likely.

3.    PROCEDURE

The first step is to select a candidate station
and an appropriate number of neighboring stations, say,
5 or 6.  The second step is to compute the correlation
coefficients Dj in (1) between the candidate and each
neighbor.  To reduce the impact of a potential step-
change or shift on the cross correlation calculation, a
first-difference filter is applied to each time series.  Then
the annual cycle of first-differences is obtained by
averaging the differences from all Januaries in the
record, all Februaries, all Marches, etc.. The monthly
average first difference is then subtracted from the
original first-difference data.  Removing the annual
cycles reduces the otherwise resulting inflation of the
magnitude of the correlation coefficient.

The third step is to calculate the q-series in (1)
in which y and x are obtained by averaging the monthly
temperatures from all Januaries in the record, all
Februaries, Marches, etc.  Thus there are 12 values of
y  and 12*k values of x , i.e., 12 for each neighbor.
Again, the purpose is to remove the annual cycle of
monthly temperatures.  An additional component of the
third step is to scale the q-series according to the
annual cycle of variance of the monthly temperatures.
This is done because, particularly at mid-latitude
stations, there is greater interannual variability of
January (mean) temperatures than of July (mean)
temperatures.  The annual cycle of standard deviations
that is calculated is representative of all stations in that



the sum of the squares of the monthly departures from
the mean monthly temperatures involved in computing
the standard deviation for each month includes both the
candidate and neighbors.

The fourth step is to standardize the q-series
leading to the z-series in (2), which, therefore, has unit
variance and zero mean.  The fifth and final step is to
compute the test statistic T for each value of a that was
chosen and examine the test statistic time series for
values of T > C for the chosen significance level.  If the
critical value has been exceeded, there is reason to
believe an inhomogeneity of the form of a step-change
or shift in level of the candidate station has occurred at
or near the largest value of T.

4.   APPLICATION

The maximum likelihood ratio (MLR) test was
applied to monthly maximum and minimum time series
from approximately 240 First-Order stations over the
period 1991-2000 in order to assess the homogeneity of
each series.  This sample of station records was
selected since the potential for an inhomogeneity exists
in nearly each of the time series associated with the
commissioning of the Automated Surface Observing
System (ASOS).  ASOS station commissioning was
carried out systematically at these locations beginning in
the early 1990s, with the majority completed during the
mid- to late 1990s, as part of the National Weather
Service's modernization program.  Commissioning at a
handful of First-Order stations occurred after the year
2000.  The changeover to ASOS brought a change in
temperature measurement equipment as well as
possible changes in instrument siting characteristics.
Each factor may contribute to discontinuities in
temperature observations from First-Order stations.

Excluding those occasions where the
maximum likelihood ratio test statistic, T, critical value is
reached within the first or last few observations only
(see section 5), our analysis shows that the number of
stations where the MLR test (5% significance level)
suggests a change in mean level somewhere in the 10-
year period is large: 165 for monthly maximum series
and 148 for monthly minimum temperature.  An example
where the likelihood ratio test suggests one change in
mean level, coincident with ASOS commissioning, is
shown in Fig. 1. Fig. 1(a) shows mean monthly
maximum temperature departures at Phoenix, AZ, as
well as departures from the reference series calculated
using (1).  The standardized differences between the
candidate and reference series are shown in Fig. 1(b),
and the time series of the test statistic, T, is shown in
Fig. 1(c).  ASOS commissioning at Phoenix occurred in
March 1994 (month 40 of the 120-month time series),

which is the month where the magnitude of the test
statistic reaches a maximum.  The maximum value of
the test statistic is the most likely location in the time
series where a change in mean level occurs.  The
dashed line in Fig. 1(c) shows the magnitude of the T-
critical value for a time series of this length.

It should be noted that the critical value of the
MLR test statistic is commonly exceeded more than
once during the 1991-2000 period for a number of First-
Order monthly temperature series.  The presence of
multiple "peaks" in the test statistic suggests at least the
potential for multiple changes in the mean level of
monthly temperature series within the 10-year period.
Fig. 2 shows an example with multiple peaks in the test
statistic and provides the same time series for Charlotte,
NC as shown in Fig. 1.  Note that one of the peaks in T
(Fig. 2.c.) is coincident with the ASOS commission date
of July 1998 (month 90 of the 120-month series).

Since the dates of ASOS station
commissioning are known, the presence of a statistically
significant peak in the likelihood ratio test statistic close
to the time of ASOS commission date is of interest.  Fig.
3 shows histograms of the difference, in months,
between the date of ASOS commissioning and the date
of the nearest significant peak (if more than one) in the
T test statistic for both monthly maximum and monthly
minimum temperature series.  Stations commissioned
after 2000 were excluded.  It is clear from Fig. 3 that the
MLR test suggests that a change in the mean level of
monthly maximum and minimum temperatures series
likely occurred at a number of First Order stations
coincident with ASOS station commissioning.  The
results summarized in Fig. 3 suggest also that the MLR
test is amenable to the evaluation of serial monthly
temperature observations, subject to the modifications
described in section 3.

As stated in the introduction, the motivation for
this work was to provide a contribution to the design of a
QA system that includes tests capable of reducing the
time between the occurrence of a discontinuity its
detection.  Consequently, we also ran the MLR test on
the same monthly temperature series, but this time
truncated 10 months after the ASOS commission date.
This was done to shed some light on the capability of
the MLR test to identify inhomogeneities occurring near
the end of a station's period of record since the ultimate
use of the MLR test will be in a monitoring capacity,
evaluating the homogeneity of temperature time series
updated each new data month. Fig. 4 shows histograms
identical to those in Fig. 3, except in this case the
differences between the peak in the test statistic T and
the commission date are for the truncated time series.
The histograms of differences indicate a slight increase
in the number of time series having an apparent change



in mean level that coincides with the beginning of ASOS
period.  A possible contributing factor behind this slight
increase  in  MLR  test  rejections is discussed briefly in
section 5.  An example of an ASOS-coincident MLR test
rejection occurring using the truncated time series, but
not using the original series is shown in Fig. 5.   The
figure shows the same suite of time series as in Figs. 1
and 2, in this case for mean monthly maximum
temperatures at Des Moines, IA.  The difference
between Fig. 5 and the earlier figures is that two time
series for the T test statistic are given in Fig. 5(c).  The
solid line represents the time series of T for the full 120
months while the dashed line represents the magnitude
of T for the 69-month temperature series ending in
October 1996, 10 months following the December 1995
ASOS commissioning.

5.  CAVEATS

Evaluation of a large number of simulated
homogeneous time series has shown that some
preference exists for the maximum value in the T test
statistic to occur near the ends of a period of record.
This is a consequence of the relatively few observations
available to provide a stable estimate of the mean level
for the shortest segments that occur at the beginning or
end of a time series.  In the application of the MLR test  on
the First-Order temperature time series for the decade
of the 1990s, however, the maximum value of T
occurred near the ends of the time series relatively
infrequently.  In fact, when a change in mean level is
present somewhere else in the time series, the value of
the test statistic near the ends of the time series rarely
approaches the 5% significance level.  Nevertheless,
the slight increase in the number of rejections near the
end of the truncated time series as indicated through a
comparison of Figs. 3 and 4, even though coincident
with ASOS commissioning, may be evidence of the
need to modify the magnitude of the critical value of the
test statistic as a function of the position of the
observation in the time series.

In addition, experience has shown that when
more than one change in mean level is present in a
series, however brief, the time series of the test statistic
can sometimes be difficult to interpret since the
presence of one change in mean level can affect the
magnitude of the test statistic in the vicinity of a second
change. The solution to this problem could take the form
of analyzing successive segments of a time series
separately, as suggested by Alexandersson and Moberg

(1997), and/or through the successive adjustment for
earlier discontinuities before any evaluation of more
recent segments of a temperature series are carried out.

6.   CONCLUSION

The modification of the MLR test described in
this paper appears to be quite sensitive to changes in
mean monthly temperature associated with the
commissioning of ASOS at First-Order stations.  In fact,
the test statistic frequently points to the most likely
month for a discontinuity that is exactly coincident with
the ASOS commission date.  In addition, a simple test,
conducted by truncating each of the approximately 240
time series 10 months after ASOS commissioning
suggests, at least for this sample of stations, that there
little reduction in the capability of MLR test to identify the
same changes when they occur near the end of the
period of record.  The MLR test also may be used as a
means to test for the presence of trends in a time series.
Future reports will address the characteristics of the
MRL test when used for the identification of non-climatic
trends in monthly temperature series.

References

Alexandersson, H., 1986: A homogeneity test applied to
precipitation data. J. Climatol., 6, 661-675.

Alexandersson, H., and A. Moberg, 1997:
Homegenization of Swedish temperature data. Part
I: Homogeneity test for linear trends. Int. J.
Climatol., 17, 25-34.

Easterling, D. R., and T. C. Peterson, 1995: A new
method for detecting and adjusting for
undocumented discontinuities in climotological time
series.  Int. J. Climatol., 15, 369-377.

Menne, M. J., and C. E. Duchon, 2000: Quality
assurance of daily temperature observations at the
National Climatic Data Center. Preprints, Twelfth
Conference on Applied Climatology, Asheville, NC,
Amer. Meteor. Soc., J48-J50.

Menne, M. J., and C. E. Duchon, 2001: A method for
monthly detection of inhomogeneities and errors in
daily maximum and minimum temperatures. J.
Atmos. Oceanic Technol., 18, 1136-1149.

Peterson, T. C., and D. R. Easterling, 1994: Creation of
homogeneous composite climatological reference
series.  Int. J. Climatol., 14, 671-697.

Wilks, D. S., 1995: Statistical Methods in the
Atmospheric Sciences. International Geophysics
Series, Vol. 59, Academic Press, 464 pp.



0 12 24 36 48 60 72 84 96 108 120
0

20

40

60

80

T

0 12 24 36 48 60 72 84 96 108 120
-4
-3
-2
-1
0
1
2
3
4

Z

0 12 24 36 48 60 72 84 96 108 120
-10

0

10

D
eg

re
es

 (
F

)
-5

5
(a)

(b)

(c)

Month

0 12 24 36 48 60 72 84 96 108 120
0

10

20

30

40

T

0 12 24 36 48 60 72 84 96 108 120
-4
-3
-2
-1
0
1
2
3
4

Z

0 12 24 36 48 60 72 84 96 108 120
-10

-5

0

5

10

D
eg

re
es

 (
F

)

(a)

(b)

(c)

Fig. 1. (a) Time series of monthly maximum temperature departures January 1991 through December 2000 at 
Phoenix, Arizona (solid line) and for the reference series comprised of nearby stations (dashed line), calculated
using Eq. (1); (b) standardized difference (z) between the candidate and reference series; and, (c) time series of the 
maximum likelihood ratio test statistic, T, for a change in mean level.  The dashed line is the magnitude of the 95% 
critical value for a time series with 120 observations.  The date of ASOS commissioning is noted by the arrow at 
month 40 (March 1994).

Fig. 2.  As in Fig. 1, except for Charlotte, North Carolina.



Fig. 3. Histogram of the differences between the date of nearest statistically significant peak in the maximum 
likelihood ratio test statistic, T, and the date of ASOS station commissioning for at First-Order stations.  (a) Monthly 
maximum temperatures; (b) Monthly minimum temperatures.

Fig. 4. As in Fig. 3, except each First-Order temperature series was truncated 10 months following the ASOS 
commission date before application of the MLR test.
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Fig. 5.  As in Figs. 1 and 2, except for Des Moines, Iowa, and in (c), the time series of the test statistic, T, is given for 
an evaluation of the full 10-year period (solid line) and for a period of record ending 10 months after the December 
1995 ASOS commission date (dashed line).
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