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1. Introduction 
 

Even with the development of sophisticated high-
resolution mesoscale models, there is still a need 
for simple models of precipitation in complex 
terrain. Simple models can help to predict 
flooding, erosion, avalanche danger, glacier 
growth and other hydrological phenomenon at 
very high spatial resolution and little cost. Models 
of this type were proposed by Collier (1975), 
Rhea (1978) and Smith (1979) among others, 
assuming that the condensed cloud water falls 
immediately to the ground.  More recently, Alpert 
and Shafir (1989) and Sinclair (1994) included 
the downstream drift of hydrometeors in their 
simple upslope models. Their methods however 
used an ad hoc wind-dependent Gaussian 
weighting scheme instead of directly solving an 
advection equation.  In this note, we derive and 
test a new advection model that can be efficiently 
applied to small regions with complex terrain. The 
key element in the model is the idea of 
characteristic time scales for condensed water 
conversion and fallout. The concept of a 
microphysical time constant has been examined 
by Jiang and Smith (2001). 
 
2. Model derivation 
 
We begin by postulating a pair of linear equations 
describing the vertically integrated cloud water 
density (qc(x,y)) and hydrometeor density 
(qs(x,y)). 
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where τc is the time constant for conversion 
from cloud water to rain or snow and τf is the time 
constant for hydrometeor fallout. In (1), S(x,y) is 
the rate of cloud water generation by moist 
adiabatic uplift. The last term in (2) is the 
precipitation at the ground  
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In steady state, the material derivatives in (1) and 
(2) become 
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where U
r

 is the horizontal wind vector with 
components U and V.  To solve (1-4), we Fourier 
transform each field (S, qc, qs or P) according to  
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where k and l are the components of the 
horizontal wavenumber vector. 
 
Using   ilyikx →∂

∂→∂
∂ ,  and 
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in (1, 2, 3, 4), an expression for the Fourier 
Transform of the precipitation distribution can be 
obtained. 
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This expression can be inverted to obtain the 
precipitation distribution (P(x,y)) using  
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This double Fourier Transform procedure is 
widely used in 3-D mountain wave theory (e.g. 
Sawyer, 1962, Smith 1980). The mathematical 
properties of the double Fourier Transform are 
given by Sneddon (1951) and elsewhere. The 
present formulation allows any wind direction to 
be used, without rotating the coordinate axes 
(Smith, 2002a). The forward and inverse Fourier 
transforms (5 and 8) can be done quickly using a 
Fast Fourier Transform (FFT) algorithm. Note 
that the two time constants in (7) are 
mathematically interchangeable.  
 
To illustrate the properties of (7), we consider a 
point source of cloud water produced by a fixed 
isolated spot of uplift, so that 
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Dirac delta functions. We also assume U>0 and 
set V=0.  Inversion of (7) can be carried out using 
contour integration of (8).  For x>0, the 
integration path in the complex k-plane closes in 
the upper half-space, encircling the two simple 
poles in (7). The residue theorem gives (9); 
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For x<0, the integration path closes in the lower 
half-space, including no poles. Thus P(x,y)=0.  If 
the two tau values are equal, using L'Hospital's 
rule, (9) becomes 
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while if both tau values are zero (i.e. no time 
microphysical delay), (7) and (8) or (9) give 
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In the general case (9), the precipitation rises 
downstream of the source pulse, reaches a 
maximum and decays exponentially. The area-
total precipitation (the integral of 9, 10, or 11) is 
equal to the source strength A. In the case of 
equal taus (10), the precipitation peak is located 
a distance d=Uτ downstream of the input pulse of 
cloud water. For example, if U=10m/s and τ=500 
seconds, =5km. 
  
There is some ambiguity concerning the cloud 
water source function S(x,y) in (1). According to 
Smith(1979), for an unsheared saturated moist-
neutral atmosphere, the source function is given 
by positive values of  
 

),()(),( yxhUhzqyxS v ∇⋅==
r

ρ  (12) 
 
In (13), qv(z=h) is the saturated mixing ratio at the 
ground, VjUiU +=

r
 is the horizontal wind vector 

and h(x,y) is the terrain. In real applications, 
several questions arise. What degree of 
smoothing should be applied to the terrain? How 
should qv be estimated? What if the wind 
changes with height? The most troubling 
questions concern regions of descent. Should S 
be allowed to be negative or should it be set to 
zero in downslope regions?  These issues are 
discussed in Smith (2002b). 
 
3. An application to orographic precipitation 

in the Italian Alps 
 
An opportunity to test (7) is given by data from 
the Mesoscale Alpine Programme (MAP) in 1999 
(Bougeault, et al., 2001). An appropriate case of 
orographic precipitation in northern Italy occurred 
during the Intensive Observing Period 2b 

described by Smith et al (2002). On September 
20, 1999, a strong southerly stream of moist air 
lifted over the Alps bringing heavy precipitation.  
 
Data from the Monte Lema radar (46.042N, 
8.833E) is available for a small region in 
northwestern Italy near Lago Maggiore (Joss et 
al., 1998). The terrain in the test region is 
complex (Figure 2). On the largest scale, the 
terrain rises towards the north and then descends 
beyond the St Gotthard pass into the Rhine 
Valley. On a somewhat smaller scale, the funnel 
shaped valley leading to Lago Maggiore is seen. 
On the smallest scales shown (3 to 5 km) 
numerous hills and ridges are seen. In spite of 
the general upslope nature of the southerly flow, 
parcels rise and fall several times as they move 
northward. 
 
The predictions from the upslope models were 
computed in the following way. The qv field was 
specified as a function of altitude using a 
saturated adiabat. The horizontal wind in (12) 
was given by vertically and time averaged 
Doppler data from Monte Lema. The same wind 
values (U=1.7, V=19.1m/s) are used for the 
advective velocity in (6).  The terrain used in (12) 
is high resolution with a grid spacing of one 
kilometer.  
 
The correlations in Table 1 indicate that in 
predicting spatial patterns, the raw upslope 
model has no skill, while the upslope FFT model 
has considerable skill. It is nearly as good as the 
mesoscale models. 
 
The average precipitation values in Table 1 must 
be viewed with caution.  The Monte Lema 
estimate could be too low due to terrain blockage 
of the radar beam. The Monte Lema radar fails to 
register the precipitation falling to the north of the 
first two ranges of foothills. Raingauge data (not 
shown) suggests that the COAMPS prediction 
might be closer to the truth.  Even in this case, 
the upslope model is seen to greatly 
overestimate the precipitation as it assumes 
perfect precipitation efficiency. .  
 
4. Discussion 

 
In this paper, we derived and tested an advection 
model of orographic precipitation. The time-delay 
algorithm generally advects precipitation 
downwind and smooths the prediction of the raw 
upslope model. The smoothing caused by the 
microphysical time delay is small enough that the 
effect of cloud-water source regions on windward 
slopes are still clearly seen.  Every hill and ridge 
still has its own precipitation maximum, although 
these are typically shifted downstream to the hill 
peak. 
 



 

The "upslope-FFT" model (5,7,8,13), with time 
delays in the range of τ=200 to 1500 seconds, 
gives reasonable predictions of precipitation 
patterns in the test case. These delay values are 
consistent with the cloud water residence times 
computed from numerical models: 300 to 2000 
seconds for the same case (Smith et al. 2002). 
They also are in the range expected for fallout 
times using fall speeds of 1m/s and 5m/s for 
snow and rain. For example, a mean cloud depth 
of 3km with an average terminal fall speed of 
3m/s gives a delay of 1000 seconds.   
 
While the correlation coefficients in Table 1 are 
good, suggesting some skill in pattern prediction, 
the amount of precipitation is significantly over 
estimated by the upslope model. The time-delay 
algorithm has no influence on this result, as it 
conserves water.   For southerly flow against the 
Alps, we have the paradox that the overall 
precipitation efficiency (PE) is close to one (see 
Smith et al. 2002), while the PE for each hill is 
rather small, probably in the range of 0.1 to 0.3. 
Only by repeated lifting events can all the excess 
water be precipitated.  
 
A more detailed evaluation of the upslope-FFT 
model is difficult because of uncertainties in the 
precipitation observations. The Monte Lema 
radar data are seriously affected by terrain 
screening and by the bright band at the melting 
level (3km). The Alpine raingauge network does 
not even approach the density needed to resolve 
the actual precipitation patterns. 
 
Given current levels of understanding, the 
precipitation in complex terrain might best be 
estimated by using a few raingauges to scale 
down the upslope-FFT model into a reasonable 
range Thus, the model is used essentially as an 
interpolation method. It might also be reasonable 
to alter the time delays according to the likelihood 
of rain or snow. 
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Table 1. Monte Lema Area Radar and Model precipitation totals and correlations. 
 
 

 
 
Figure 1   Accumulated precipitation (mm, shaded) for 20 September, 1999, for a region near Lago 
Maggiore in northwestern Italy: a) Monte Lema radar, b) COAMPS, c) MC2, d) Upslope model (U=2, V=19, 
no delay), e) Upslope FFT model (U=2, V=19, τc=τf=500 seconds). The upslope model values are divided by 
a factor of 10 to use the same gray scale as the data and mesoscale models. Other lines in the figure show 
terrain and a section of the Italy-Switzerland border. The width of the scene is about 160km. 
 

 

Radar and Models Parameters  
(τc, τf ,U, V) 

Average precipitation 
(mm) 

Correlation Coefficient 

Monte Lema NA 26 1 
COAMPS NA 60 0.72 
MC2 NA 37 0.79 
Upslope 0,0, 1.7,19.1 506 0.47 
Upslope FFT 500,500, 1.7, 19.1 450 0.71 



 

 
 


