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1. INTRODUCTION

Mountain forced gravity waves have been stud-
ied extensively for over 50 years, from theoretical
and numerical modelling studies through to lab-
oratory and observational experiments. However,
the influence of the atmospheric boundary layer on
the dynamics of these waves has received little at-
tention. Recent progress has been made by using
surface friction to represent simple boundary layer
effects in numerical modelling studies of mountain
flow (Richard et al 1989, Grubisic et al 1995, Olaf-
sson and Bougeault 1997a, and Peng and Thomp-
son, 1998, 2000). These studies show that surface
friction acts to reduce the strength and amplitude
of lee side phenomena such as gravity wave activ-
ity, downslope windstorms and lee vorticies. In the
present contribution a simple two layer theory of
the atmosphere is proposed and the results of this
model are suggestive of the controlling parameters
which act in this situation.

2. TWO LAYER MODEL

Consider a simple, two-dimensional (z — z), two-
layer model of the atmosphere. In full generality
the basic state wind profile is considered to be a
function of height, w = U(z). In an attempt to rep-
resent the gross, leading order effect of a well mixed,
neutral boundary layer the lower layer is consid-
ered to be inviscid with neutral stability, N = 0.
Above a prescribed boundary layer depth, z = D,
the upper layer is considered to have constant static
stability given by N = constant (where N is the
Brunt-Vaisala frequency). Analytical solutions to
the problem of atmospheric flow over an isolated
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mountain are sought for two different basic state
wind profiles in the lower boundary layer air: when
the windspeed is constant, and when the windspeed
is linearly sheared with height. In both situations
the wind is taken to be constant in the upper layer,
and is continuous with appropriate dynamical con-
ditions across the interfacial boundary.

The steady state, non-rotating governing equa-
tion of motion for the considered linear, Boussinesq
problem is:
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where 12 is the classical Scorer parameter (12 =

1[\]’—2 - %%27(2]). In the lower layer eq. (1) is solved
with the lower boundary condition, w' = U %,

where h(z) is the mountain profile. The flow in
the upper layer is then found from solving (1) with
the specified basic state atmospheric conditions and
matching interfacial conditions at the layer bound-
ary z = D. The classical Witch of Agnesi mountain
profile is chosen for its simple Fourier transform, so
that
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with ‘a’ denoting the half-width of the mountain.
3. CONSTANT LOW LEVEL WIND

The first situation considered is that of a uni-
formly constant windspeed throughout the atmo-
sphere. The basic state wind profile is taken to
be w = U, in both layers, and the static stabil-
ity is given by N = 0 in the lower layer, and
N = constant in the upper layer. Equation (1)
then reduces to,
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in the lower layer. In this layer the Scorer param-
eter is zero and gravity waves are not supported.
Following Smith (1979, page 101), the analytical so-
lution for the flow in the lower layer can be written
in terms of the vertical velocity as,
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or the streamline displacement field from w = U %zl

as,
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for 0 < 2z < D. For the flow in the upper layer,

scale analysis for appropriate values of the moun-

tain halfwidth a and atmospheric parameters N and

U, reduce the governing linear equation, (1) to the
hydrostatic form,
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This is now solved with the interfacial boundary
condition of n(z,D) = H'A?/(A% + z?) (H' =
Ha/A, A = a+ D) acting as the bottom boundary
for the upper layer flow, resulting in the flow field,

Acosl(z — D) — zsinl(z — D)
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for z > D (where I = N/U,). The flow response
given by (6) represents a hydrostatic, vertically
propagating gravity wave field in the upper layer.
The vertical flux of horizontal momentum in the
upper layer wave field can be calculated and com-
pared to the result for a linear hydrostatic wave
field in an inviscid ‘single’ layer atmosphere with
u = U, and N = constant. It can be seen that
Miwotayer = BMonetayer With B being the reduction
factor given by,
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and M denoting the momentum flux in the z-
direction calculated as, M = p, ffooo u'w dx.

4. LINEARLY SHEARED LOW LEVEL WIND

The second situation considered in this contri-
bution is that of a basic state wind profile which
is linearly sheared in the lower boundary layer air.
The static stability is still considered to be neutral
so that N = 0, and the wind profile is given by

u(z) = Up + Cz for 0 < z < D. The windspeed
at the ground (u(0) = Uy) is chosen to be non-zero
for ease of mathematical analysis, but can be cho-
sen to be arbitrarily close to zero to closely mimic a
true viscous bottom boundary condition within the
atmospheric boundary layer. The vertical velocity
in the lower layer flow is once again found from the
governing equation, (2), and is given by eq. (3).
However, the streamline displacement field is now
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for the linearly sheared wind profile. In the up-
per layer the basic state atmospheric conditions of
constant N and U, are used with the resulting hy-
drostatic governing linear equation given by (5).
The Fourier integral solution to (5) with the in-
terfacial /bottom boundary condition of n(z,D) =
Uyh(z)/U, results in the streamline displacement
field,

n(z,z) = H'A (
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for the vertically propagating wave field in the up-

per layer (2 > D) with H" = H (%) (%). The
same comparison can be made between the momen-
tum flux for a linear hydrostatic gravity wave field
from a ‘single’ layer inviscid atmosphere forced by

the same mountain profile. Then
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with v = (g—z) and 8 defined from the previous
case.

In this situation two non-dimensional parameters
control the gravity wave flow response in the upper
layer. The second, new parameter is v, the ratio
squared of the ground level windspeed to the wind-
speed at the top of the considered boundary layer
air mass. The windspeed at the interfacial bound-
ary (u(D) = U,) is taken to be greater than the
windspeed at the ground (u(0) = U,) giving rise to
an additional dependence of the momentum flux de-
crease and wave amplitude decrease on the ground
to boundary top windspeed ratio.

5. DISCUSSION
A simple theory has been presented of the lead-

ing order perturbations resulting from a moun-
tain completely contained within the boundary



layer. The nonlinear turbulent nature of the flow
within the neutral boundary layer is not consid-
ered, only the leading order effect of the neutral
stratification. The theory highlights two important
non-dimensional parameters controlling the gravity
wave field in the upper layer. These are a/D, the
ratio of the scale of the mountain half-width to the
boundary layer depth, and Uy/U,, the ratio of the
near surface windspeed to the windspeed at the top
of the boundary layer. The two situations anal-
ysed show that the lower boundary layer acts to re-
duce the wave amplitude compared to inviscid, sin-
gle layer theory. In a more realistic, atmosphere this
reduction in wave amplitude will effect the height
at which the gravity wave field overturns, moving it
to greater heights. With more complex and realistic
wind profiles this effect of the boundary layer may
remove potential breaking which would otherwise
have occurred in the absence of the boundary layer.
Olafsson and Bougeault (1997b) have provided per-
suasive evidence that this was the case during the
PYREX observational campaign of October 1990.

References

Grubisic, V., Smith, R.B. and Schar, C. (1995) The
effect of bottom friction on shallow-water flow
past an isolated obstacle. J. Atmos. Sci., 52,
1985-2005.

Olafsson, H. and Bougeault, P. (1997a) The effect
of rotation and surface friction on orographic
drag. J. Atmos. Sci., 54, 193-210.

Olafsson, H. and Bougeault, P. (1997b) Why was
there no wave breaking in PYREX? Beitr.
Phys. Atmos., 70, 167-170.

Peng, M.S. and Thompson, W.T. (1998) Effect of
surface friction on mountain waves. Proceedings
of 8th AMS Conference on Mountain Meteorol-
ogy, 3-7 August 1998, Flagstaff, Arizona, USA,
364-367.

Peng, M.S. and Thompson, W.T. (2000) Boundary
layer effects on mountain gravity waves. Pro-
ceedings of 9th AMS Conference on Mountain
Meteorology, 3-7 August 1998, Snowmass, Col-
orado, USA, 288-291.

Richard, E., Mascart, P. and Nickerson, E.C. (1989)
The role of surface friction in downslope wind-
storms. J. Appl. Meteorol., 28, 241-251.

Smith, R.B. (1979) The influence of mountains on
the atmosphere. Advances in Geophysics, 21,
87-230.



