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1. INTRODUCTION

The Canadian mesoscale model (Benoit et al.,
1997) provided daily forecasts across the Alps at 3-km
resolution during the entire MAP field phase of 1999.
The model had been extensively optimized in previous
years for efficiency on various computer architectures
(Thomas et al., 1997) and accuracy inside as well as at
the model boundaries (Thomas et al. 1998). An
overview of its performance during MAP is given in
Benoit et al. (2002). Following the experiment, it
became more and more evident that there was a
problem related to finescale orography forcing in the
model (Schaer et al., 2002). The problem is soon to be
explained (Klemp et al., 2002) and no doubt corrected.
Here we describe a modification to the model dynamics
kernel which in particular greatly reduces its spurious
sensitivity to finescale orography.

2. THE MODEL

The main feature of the MC2 (Mesoscale
Compressible Community) model is its absolutely
stable semi-implicit semi-Lagrangian numerical time
integration scheme developed by the late Andre Robert
(Robert, 1969; Kwizak and Robert, 1971; Robert,
Henderson and Turnbull, 1972, for the semi-implicit
part and Robert, 1981; Robert, 1982; Robert, Yee and
Ritchie, 1985; Tanguay, Robert and Laprise, 1990, for
the semi-Lagrangian part). The scheme here is applied
to time discretize the non-hydrostatic meteorological
equations, the Euler exact equations of motion.

In the horizontal the equations are written in a so-
called invariant form readily admitting, with the
specification of a single scaling parameter S, a choice
of orthogonal coordinates: cartesian, spherical and
even cylindrical (rotating annulus experiments) as well
as all conformal mappings (stereographic, mercator,
…) of the spherical earth. In the vertical a terrain-
following oblique coordinate system of the height-
variety is available. Recently the metric has been
generalized to allow for maximum flexibility in the
choice of vertical coordinate definition. In particular, we
may use the SLEVE coordinate of Schaer et al. (2002).

Space discretization is done using second order
finite differences with variables distributed on a set of
staggered grids (Arakawa-C type in the horizontal,

Charney-Phillips type in the vertical). This grid system
is particularly well suited for deriving the elliptic-type
numerical equation that characterizes the semi-implicit
scheme. Since the time discretization scheme is
absolutely stable, a balance can easily be achieved
between space and time truncation errors, so higher
order schemes in space are not felt necessary.

Horizontal resolution is taken to be uniform in the
choosen coordinate (e.g. in spherical coordinates it is
uniform in latitude and longitude while in mercator
projection it is uniform in map coordinates). Vertical
resolution may be varied at will.

Figure 1. Orography of the Swiss Model at 14-km
resolution. Partial domain; dots are the SM grid points.

Figure 2. Orography of MC2 at 3-km resolution. Entire
domain.
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Coupled to this dynamical kernel, in a splitting up
mode, is an extensive library of parameterization
schemes for physical effects pertinent for a variety of
situations and scales.

3. THE PROBLEM

From the beginning we were well aware of the
sensitivity of MC2 to finescale orography. And this is
well illustrated in Figures 1 and 2, first presented at a
previous MAP meeting (Benoit et al., 1999). Figure 1
shows the orography at 14-km resolution of the Swiss
model. Figure 2 shows the orography of MC2 at 3-km
resolution as used during the MAP field phase. It is
obvious that the orography prepared at the time for
MC2 is smooth (4-∆x filtering), considering that it has
five times the resolution of the SM. The grid size of
MC2 is 350 x 300.

The problem related to finescale orography forcing
in MC2 was exposed by Leuenberger et al. (2001). This
is further confirmed by Schaer et al. (2002) which show
in particular that a substantial reduction of small-scale
noise at intermediate and upper model levels - noise
related to small-scale topography features - is achieved
in MC2 by adopting a terrain-following coordinate
system with a scale-dependent decay of the terrain
features with height. This way, the need to pre-smooth
the orography is being substantially reduced. Examples
of the problem

Figure 3. ISOthermal basic state.

Figure 4. VARiable basic state.
are shown and further discussed in the next section.

4. NOT THE SOLUTION BUT…

Schaer et al (2002) describe an idealized
experiment of stably stratified flow over a two-
dimensional mountain ridge having a bell-shaped
structure with superposed 8-∆x small-scale variations,
the basic-state flow being uniquely defined by the
Brunt-Vaisala frequency N=0.01 s-1 and the horizontal
wind velocity U=10 m/s. With surface temperature
To=288 K, this corresponds to a realistic tropospheric
temperature gradient. For the model, which uses an
isothermal basic state, this leads to fairly large
temperature and pressure perturbations. This is the
situation where the model stationary solution shows
considerable distortions in the small scales (Figure 3).
On the other hand, with N=0.01871, the modeled
atmosphere is isothermal just like its basic state and
the simulation becomes nearly perfect. This suggested
to us the possible benefits of introducing a non-
isothermal basic state. In particular we could have the
option of a basic state based on constant N*. This is
what was done. The result when N*=N=0.01 is shown in
Figure 4.

For real cases, it is not suitable to use a basic
state with constant N*. We have adopted the following
hyperbolic tangent profile for temperature:

( )T Tsurf Tsurf Ttop z H* ( ) tanh /= + −

with Tsurf Ttop H= =288 220 K   K  =10000 m; ; . Figures 5 and 6

compare cross-sections across the Rocky mountains
near Vancouver showing vertical motion (contours
every 5 cm/s) for 6-hour 10-km resolution forecasts of
MC2, respectively with ISOthermal and VARiable basic
states. Only a 2-∆x filtering is applied on the orography.
Noise is reduced in the VAR integration, especially
below 5 km. As a measure of success in eliminating the
noise, we show the same forecast done with the
SLEVE coordinate and the isothermal basic state in
Figure 7. The SLEVE integration clearly wins at high
altitudes in particular since we are not able to fit the
atmospheric mean profiles eveywhere and especially
near the tropopause. Combining the SLEVE and VAR
features (not shown) sligthly reduces the noise again.
While obviously not solving the problem, the option of a
variable basic state, which we describe in the next
section, is a valuable addition to the dynamics kernel of
our model.

5. THE MODIFIED EQUATIONS

If we consider the model equations written for
simplicity in cartesian coordinates in an absolute frame
of reference and not considering moist processes:
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with q p=ln , from which one substracts a non-isothermal
basic state characterized by ( ) ( )T z q z* , *  and defining
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with c c p cv RT* ( / ) *
2 = . Besides the fact that the basic

state parameters are variable, the only difference
between this and our original model system is the
presence of the gradient ∂ ∂T z*/ . For the implementation

of the semi-implicit semi-Lagrangian scheme, it is
necessary to eliminate variable coefficients in front of
material derivatives. This happens once here in front of
dq’/dt in the thermodynamic equation. All considered, it
seemed advantageous to define buoyancy

B g T T= ’/ *
 and generalized pressure P R T q= * ’ to

obtain at the end:
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Figure 5. A noise problem. ISOthermal basic state.

with γ * / *= g c pT  and β γ* * * /+ =N g2 . In effect, the elliptic

problem to be solved is then essentially unchanged
except for the variability of the coefficients. After space
and time discretization, we get:
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having been first transformed to terrain-following Z-
coordinates:

Figure 6. Reduced noise. VARiable (tanh) basic state.

Figure 7. Reduced noise. SLEVE coordinate.
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and then translated to finite difference and averaging
operators.

6. CONCLUSION

The spurious sensitivity of MC2 to finescale
orography is being actively investigated and ways to
reduce this sensitivity have been found here and
elsewhere. Following the study of Klemp et al. (2002), it
is clear that in our case the problem is related to
numerical inconsistencies between the semi-
Lagrangian scheme and other parts of the code. We
have recently coded and tested a consistent Eulerian
scheme. The distortions present in the stationary
mountain-wave study when using the semi-Lagrangian
scheme disappears when using the Eulerian scheme.
The Eulerian scheme will therefore become our control
scheme as far as this noise problem is concerned.

Our contribution in this respect has been to study
the importance of the choice of basic state used in the
implementation of semi-implicit semi-Lagrangian
scheme. Traditionnally, mostly isothermal basic states
have been used not only because of the simplicity of
the resulting elliptic problem but also for stability
reasons. It is to be noted that the basic state
temperature adopted here varies as a function of height
only, meaning that, in model coordinates, it is a general
function of position.

When the model is initialized in hydrostatic
equilibrium, if that state corresponds to the chosen
hydrostatic basic state, no matter what the underlying
terrain is, all model variables vanish and for all times:
this is the exact noflow condition.
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